Moving surfaces by non-concave curvature functions

Article

Abstract

A convex surface contracting by a strictly monotone, homogeneous degree one function of its principal curvatures remains smooth until it contracts to a point in finite time, and is asymptotically spherical in shape. No assumptions are made on the concavity of the speed as a function of principal curvatures. We also discuss motion by functions homogeneous of degree greater than 1 in the principal curvatures.

Mathematics Subject Classification (2000)

Primary 53C44 Secondary 35K55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial. Differ. Equ. 2(2), 151–171 (1994) MR 1385524 (97b:53012)MATHCrossRefGoogle Scholar
  2. 2.
    Andrews, B.: Fully nonlinear parabolic equations in two space variables. available at arXiv: math.DG/0402235Google Scholar
  3. 3.
    Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999). MR 1714339 (2000i:53097)Google Scholar
  4. 4.
    Andrews, B.: The affine curve-lengthening flow. J. Reine Angew. Math. 506, 43–83 (1999). MR 1665677 (2000e:53081)Google Scholar
  5. 5.
    Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007). MR 2339467 (2008i:53087)Google Scholar
  6. 6.
    Andrews, B., McCoy, J.: Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. arXiv:0910.0376v1 [math.DG]Google Scholar
  7. 7.
    Chow, B.: Deforming convex hypersurfaces by the nth root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985). MR 826427 (87f:58155)Google Scholar
  8. 8.
    Chow, B.: Deforming convex hypersurfaces by the square root of the scalar curvature. Invent. Math. 87(1), 63–82 (1987). MR 862712 (88a:58204)Google Scholar
  9. 9.
    Glaeser G.: Fonctions composées différentiables. Ann. Math. 77(2), 193–209 (1963) (French). MR 0143058 (26 #624)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984). MR 772132 (86j:53097)Google Scholar
  11. 11.
    Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 487–523, 670 (1982) (Russian). MR 661144 (84a:35091)Google Scholar
  12. 12.
    Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge, NJ, (1996). MR 1465184 (98k:35003)Google Scholar
  13. 13.
    Schulze, F.: Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 261–277 (2006). MR 2244700 (2007b:53138)Google Scholar
  14. 14.
    Schwarz G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975) MR 0370643 (51 #6870)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tso, K.: Deforming a hypersurface by its Gauss–Kronecker curvature. Commun. Pure Appl. Math. 38(6), 867–882 (1985). MR 812353 (87e:53009)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.MSI, ANUCanberraAustralia

Personalised recommendations