A smooth global branch of solutions for a semilinear elliptic equation on \({\mathbb{R}^N}\)



The existence of a global branch of positive spherically symmetric solutions \({\{(\lambda,u(\lambda)):\lambda\in(0,\infty)\}}\) of the semilinear elliptic equation
$$\Delta u - \lambda u + V(x)|u|^{p-1}u = 0 \quad \text{in}\,\mathbb{R}^N\,\text{with}\,N\geq3$$
is proved for \({1 < p < 1+\frac{4-2b}{N-2}}\), where \({b\in(0,2)}\) is such that the radial function V vanishes at infinity like |x|b . V is allowed to be singular at the origin but not worse than |x|b . The mapping \({\lambda\mapsto u(\lambda)}\) is of class \({C^r((0,\infty),H^1(\mathbb{R}^N))}\) if \({V\in C^r(\mathbb{R}^N\setminus\{0\},\mathbb{R})}\), for r = 0, 1. Further properties of regularity and decay at infinity of solutions are also established. This work is a natural continuation of previous results by Stuart and the author, concerning the existence of a local branch of solutions of the same equation for values of the bifurcation parameter λ in a right neighbourhood of λ = 0. The variational structure of the equation is deeply exploited and the global continuation is obtained via an implicit function theorem.

Mathematics Subject Classification (2000)

35J60 35B32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Bouard A., Fukuizumi R.: Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Ann. Henri Poincaré 6, 1157–1177 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Genoud F., Stuart C.A.: Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discr. Contin. Dyn. Syst. 21, 137–186 (2008)MATHMathSciNetGoogle Scholar
  3. 3.
    Genoud, F.: Existence and stability of high frequency standing waves for a nonlinear Schroedinger equation. Discr. Contin. Dyn. Syst. 25 (2009), in pressGoogle Scholar
  4. 4.
    Genoud, F.: Théorie de bifurcation et de stabilité pour une équation de Schrödinger avec une non-linéarité compacte. PhD Thesis No. 4233, Swiss Federal Institute of Technology in Lausanne (2008)Google Scholar
  5. 5.
    Hajaiej H.: Cases of equality and strict inequality in the extended Hardy-Littlewood inequalities. Proc. R. Soc. Edinb. Sect. A 135, 643–661 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jeanjean L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}^N}\). Proc. R. Soc. Edinb. Sect. A 129, 787–809 (1999)MATHMathSciNetGoogle Scholar
  7. 7.
    Jeanjean L., Le Coz S.: An existence and stability result for standing waves of nonlinear Schrödinger equations. Adv. Differ. Equ. 11, 813–840 (2006)MATHMathSciNetGoogle Scholar
  8. 8.
    Kantorovitch L., Akilov G.: Analyse fonctionnelle, Vol. II. Editions Mir, Moscou (1981)Google Scholar
  9. 9.
    Li Y., Ni W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^N}\). Commun. Partial Differ. Equ. 18, 1043–1054 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mossino J.: Inégalités isopérimétriques et applications en physique. Hermann, Paris (1984)MATHGoogle Scholar
  11. 11.
    Nehari, Z.: On a class of nonlinear integral equations. Math. Z. 72, 175–183 (1959/1960)Google Scholar
  12. 12.
    Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Stuart C.A.: A global branch of solutions to a semilinear equation on an unbounded interval. Proc. R. Soc. Edinb. Sect. A 101, 273–282 (1985)MATHMathSciNetGoogle Scholar
  14. 14.
    Stuart C.A.: Bifurcation in \({L^p(\mathbb{R}^N)}\) for a semilinear elliptic equation. Proc. Lond. Math. Soc. 57, 511–541 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yanagida E.: Uniqueness of positive radial solutions of Δu + g(r)u + h(r)u p = 0 in \({\mathbb{R}^N}\). Arch. Ration. Mech. Anal. 115, 257–274 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.OxPDE, Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations