Skip to main content
Log in

On certain minimax problems and Pontryagin’s maximum principle

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper deals with minimax problems for nonlinear differential expressions involving a vector-valued function of a scalar variable under rather conventional structure conditions on the cost function. It is proved that an absolutely minimizing (i.e. globally and locally minimizing) function is continuously differentiable. A minimizing function is also continuously differentiable, provided a certain extra condition is satisfied. The variational method of V.G. Boltyanskii, developed within optimal control theory, is adapted and used in the proof. The case of higher order derivatives is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), I. Arkiv för matematik 6(2), 33–53 (1965)

    Article  MathSciNet  Google Scholar 

  2. Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), II. Arkiv för matematik 6(22), 409–431 (1966)

    MathSciNet  Google Scholar 

  3. Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), III. Arkiv för matematik 7(36), 509–512 (1968)

    Google Scholar 

  4. Aronsson G.: Pontryagin’s maximum principle and a minimax problem. Math. Scand. 29, 55–71 (1971)

    MATH  MathSciNet  Google Scholar 

  5. Aronsson G.: Extension of functions satisfying Lipschitz conditions. Arkiv för matematik 6(28), 551–561 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barron E.N.: The Pontryagin maximum principle for minimax problems of optimal control. Nonlinear Anal. Theory Methods Appl. 15(12), 1155–1165 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barron, E.N.: Viscosity solutions and analysis in L8. In: Clarke, F.H., Stern, R.J. (eds.) Nonlinear Analysis, Differential Equations and Control. Kluwer, Dordrecht (1999)

  8. Barron E.N., Liu W.: Calculus of Variations in L . Appl. Math. Optim. 35, 237–263 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional Variational Problems. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  10. Carter D.S.: A minimum-maximum problem for differential expressions. Canad. J. Math. 9, 132–140 (1957)

    MathSciNet  Google Scholar 

  11. Gamkrelidze R.V.: Discovery of the maximum principle. J. Dyn. Control Syst. 5(4), 437–451 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hale J.: Ordinary Differential Equations. Wiley, London (1969)

    MATH  Google Scholar 

  13. Holmåker K.: A minimax optimal control problem. J. Optim. Theory Appl. 28(3), 391–410 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee E.B., Markus L.: Foundations of Optimal Control Theory. Wiley, London (1967)

    MATH  Google Scholar 

  15. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F.: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Aronsson.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronsson, G. On certain minimax problems and Pontryagin’s maximum principle. Calc. Var. 37, 99–109 (2010). https://doi.org/10.1007/s00526-009-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0254-1

Mathematics Subject Classification (2000)

Navigation