On certain minimax problems and Pontryagin’s maximum principle

  • Gunnar AronssonEmail author


This paper deals with minimax problems for nonlinear differential expressions involving a vector-valued function of a scalar variable under rather conventional structure conditions on the cost function. It is proved that an absolutely minimizing (i.e. globally and locally minimizing) function is continuously differentiable. A minimizing function is also continuously differentiable, provided a certain extra condition is satisfied. The variational method of V.G. Boltyanskii, developed within optimal control theory, is adapted and used in the proof. The case of higher order derivatives is also considered.

Mathematics Subject Classification (2000)



  1. 1.
    Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), I. Arkiv för matematik 6(2), 33–53 (1965)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), II. Arkiv för matematik 6(22), 409–431 (1966)MathSciNetGoogle Scholar
  3. 3.
    Aronsson G.: Minimization problems for the functional supx F(x, f(x), f′(x)), III. Arkiv för matematik 7(36), 509–512 (1968)Google Scholar
  4. 4.
    Aronsson G.: Pontryagin’s maximum principle and a minimax problem. Math. Scand. 29, 55–71 (1971)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Aronsson G.: Extension of functions satisfying Lipschitz conditions. Arkiv för matematik 6(28), 551–561 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barron E.N.: The Pontryagin maximum principle for minimax problems of optimal control. Nonlinear Anal. Theory Methods Appl. 15(12), 1155–1165 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barron, E.N.: Viscosity solutions and analysis in L8. In: Clarke, F.H., Stern, R.J. (eds.) Nonlinear Analysis, Differential Equations and Control. Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Barron E.N., Liu W.: Calculus of Variations in L . Appl. Math. Optim. 35, 237–263 (1997)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional Variational Problems. Oxford University Press, New York (1998)zbMATHGoogle Scholar
  10. 10.
    Carter D.S.: A minimum-maximum problem for differential expressions. Canad. J. Math. 9, 132–140 (1957)MathSciNetGoogle Scholar
  11. 11.
    Gamkrelidze R.V.: Discovery of the maximum principle. J. Dyn. Control Syst. 5(4), 437–451 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hale J.: Ordinary Differential Equations. Wiley, London (1969)zbMATHGoogle Scholar
  13. 13.
    Holmåker K.: A minimax optimal control problem. J. Optim. Theory Appl. 28(3), 391–410 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lee E.B., Markus L.: Foundations of Optimal Control Theory. Wiley, London (1967)zbMATHGoogle Scholar
  15. 15.
    Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F.: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden

Personalised recommendations