Optimal regularity for the Signorini problem



We prove under general assumptions that solutions of the thin obstacle or Signorini problem in any space dimension achieve the optimal regularity C1,1/2. This improves the known optimal regularity results by allowing the thin obstacle to be defined in an arbitrary C1,β hypersurface, β > 1/2, additionally, our proof covers any linear elliptic operator in divergence form with smooth coefficients. The main ingredients of the proof are a version of Almgren’s monotonicity formula and the optimal regularity of global solutions.

Mathematics Subject Classification (2000)

35R35 74G40 


  1. 1.
    Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no.Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35(34), 49–66, 226Google Scholar
  2. 2.
    Athanasopoulos I., Caffarelli L.A., Salsa S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Caffarelli L.A.: Further regularity for the Signorini problem. Comm. Partial Differ. Equ. 4(9), 1067–1075 (1979)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caffarelli L.A., Salsa S., Silvestre L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique, Dunod, Paris, Travaux et Recherches Mathématiques, No. 21 (1972)Google Scholar
  7. 7.
    Frehse J.: On Signorini’s problem and variational problems with thin obstacles. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(2), 343–362 (1977)MATHMathSciNetGoogle Scholar
  8. 8.
    Friedman A.: Variational Principles and Free-Boundary Problems Pure and Applied Mathematics. A Wiley-Interscience Publication, Wiley, New York (1982)Google Scholar
  9. 9.
    Richardson, D.: Variational problems with thin obstacles. Ph.D. Thesis, University of British Columbia, Vancouver, BC (1978)Google Scholar
  10. 10.
    Silvestre L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations