Advertisement

On the equation \({{\rm det}\,\nabla{u}=f}\) with no sign hypothesis

  • G. Cupini
  • Bernard DacorognaEmail author
  • O. Kneuss
Article

Abstract

We prove existence of \({u\in C^{k}(\overline{\Omega};\mathbb{R}^{n})}\) satisfying
$$\left\{\begin{array}{ll} det\nabla u(x) =f(x) \, x\in \Omega\\ u(x) =x \quad\quad\quad\quad x\in\partial\Omega\end{array}\right.$$
where k ≥ 1 is an integer, \({\Omega}\) is a bounded smooth domain and \({f\in C^{k}(\overline{\Omega}) }\) satisfies
$$\int\limits_{\Omega}f(x) dx={\rm meas} \Omega$$
with no sign hypothesis on f.

Mathematics Subject Classification (2000)

35F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banyaga A.: Formes-volume sur les variétés à bord. Enseignement Math. 20, 127–131 (1974)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Burago D., Kleiner B.: Separated nets in Euclidean space and Jacobian of biLipschitz maps. Geom. Funct. Anal. 8, 273–282 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dacorogna B.: A relaxation theorem and its applications to the equilibrium of gases. Arch. Ration. Mech. Anal. 77, 359–386 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dacorogna B.: Existence and regularity of solutions of dw = f with Dirichlet boundary conditions. Nonlinear Probl. Math. Phys. Relat. Topics 1, 67–82 (2002)MathSciNetGoogle Scholar
  5. 5.
    Dacorogna B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2007)Google Scholar
  6. 6.
    Dacorogna B., Moser J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 1–26 (1990)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  8. 8.
    Kneuss, O.: Phd ThesisGoogle Scholar
  9. 9.
    Mc Mullen C.T.: Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal. 8, 304–314 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Meisters G.H., Olech C.: Locally one-to-one mappings and a classical theorem on schlicht functions. Duke Math. J. 30, 63–80 (1970)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)zbMATHCrossRefGoogle Scholar
  12. 12.
    Reimann H.M.: Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen. Comment. Math. Helv. 47, 397–408 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rivière T., Ye D.: Resolutions of the prescribed volume form equation. NoDEA. Nonlinear Differ. Equ. Appl. 3, 323–369 (1996)zbMATHCrossRefGoogle Scholar
  14. 14.
    Schwartz J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)zbMATHGoogle Scholar
  15. 15.
    Tartar, L.: unpublished (1978)Google Scholar
  16. 16.
    Ye D.: Prescribing the Jacobian determinant in Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 11, 275–296 (1994)zbMATHGoogle Scholar
  17. 17.
    Zehnder, E.: Note on smoothing symplectic and volume preserving diffeomorphisms. Lecture Notes in Mathematics, vol. 597, pp. 828–855. Springer, Berlin (1976)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Section de MathématiquesEPFLLausanneSwitzerland

Personalised recommendations