Further PDE methods for weak KAM theory



We introduce and make estimates for several new approximations that in appropriate asymptotic limits yield the key PDE for weak KAM theory, namely a Hamilton–Jacobi type equation for a potential u and a coupled transport equation for a measure σ. We revisit as well a singular variational approximation introduced in Evans (Calc Vari Partial Differ Equ 17:159–177, 2003) and demonstrate “approximate integrability” of certain phase space dynamics related to the Hamiltonian flow. Other examples include a pair of strongly coupled PDE suggested by the Lions–Lasry theory (Lasry and Lions in Japan J Math 2:229–260, 2007) of mean field games and a new and extremely singular elliptic equation suggested by sup-norm variational theory.

Mathematics Subject Classification (2000)

35J20 35F20 37J50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Donsker M., Varadhan S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Natl. Acad. Sci. USA 72, 780–783 (1975)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Evans L.C.: Some new PDE methods for weak KAM theory. Calc. Vari. Partial Differ. Equ. 17, 159–177 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Evans L.C.: Towards a quantum analogue of weak KAM theory. Commun. Math. Phys. 244, 311–334 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Evans L.C.: A survey of partial differential equations methods in weak KAM theory. Commun. Pure Appl. Math. 57, 445–480 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Evans L.C., Gomes D.: Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Ration. Mech. Anal. 157, 1–33 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fathi A.: Théorème KAM faible et theorie de Mather sur les systemes lagrangiens. C. R. Acad. Sci. Paris Sr. I Math. 324, 1043–1046 (1997)MATHMathSciNetGoogle Scholar
  8. 8.
    Fathi A.: Solutions KAM faibles conjuguees et barrieres de Peierls. C. R. Acad. Sci. Paris Sr. I Math. 325, 649–652 (1997)MATHMathSciNetGoogle Scholar
  9. 9.
    Fathi A.: Orbites heteroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sr. I Math. 326, 1213–1216 (1998)MATHMathSciNetGoogle Scholar
  10. 10.
    Fathi, A.: The Weak KAM Theorem in Lagrangian Dynamics (Cambridge Studies in Advanced Mathematics) (to appear)Google Scholar
  11. 11.
    Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations, unpublished, circa 1988Google Scholar
  12. 12.
    Lasry J.-M., Lions P.-L.: Mean field games. Japan J. Math. 2, 229–260 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lasry J.-M., Lions P.-L.: Jeux a champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)MATHMathSciNetGoogle Scholar
  14. 14.
    Lasry J.-M., Lions P.-L.: Jeux a champ moyen. II. Horizon fini et controle optimal. C. R. Math. Acad. Sci. Paris 343, 679–684 (2006)MATHMathSciNetGoogle Scholar
  15. 15.
    Rorro, M.: Thesis, Universita di Roma La Sapienza, 2008. http://www.caspur.it/~rorro/hjpack/preprint/rorro@enumath07.pdf
  16. 16.
    Whitham G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations