Advertisement

A structure theorem of Dirac-harmonic maps between spheres

  • Ling YangEmail author
Open Access
Article

Abstract

For an arbitrary Dirac-harmonic map (φ,ψ) between compact oriented Riemannian surfaces, we shall study the zeros of |ψ|. With the aid of Bochner-type formulas, we explore the relationship between the order of the zeros of |ψ| and the genus of M and N. On the basis, we could clarify all of non-trivial Dirac-harmonic maps from S 2 to S 2.

Mathematics Subject Classification (2000)

58E20 53C27 

Notes

Acknowledgments

The author wishes to express his sincere gratitude to Professor Y.L. Xin in Fudan University, for his inspiring suggestions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Chen Q., Jost J., Li J., Wang G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen Q., Jost J., Li J., Wang G.: Regularity and energy identities for Dirac-harmonic maps. Math. Z. 251, 61–84 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen Q., Jost J., Wang G.: Liouville theorems for Dirac-harmonic maps. J. Math. Phys. 48(113517), 13 (2007)MathSciNetGoogle Scholar
  4. 4.
    Friedrich, T.: Dirac operators in Riemannian geometry. Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence, pp. xvi+195 (2000)Google Scholar
  5. 5.
    Hijazi, O.: Spectral properties of the Dirac operator and geometrical structures. In: Proceedings of the Summer School on Geometric Methods in Quantum Field Theory. 12–30 July 1999, Villa de Leyva, Colombia, World Scientific, Physics (2001)Google Scholar
  6. 6.
    Lawson H.B., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  7. 7.
    Schoen, R., Yau, S.T.: Lectures on harmonic maps. Conference Proceedings and Lecture Notes in Geometry and Topology, II. International Press, Cambridge (1997)Google Scholar
  8. 8.
    Xin Y.L.: Geometry of harmonic maps. Birkhäuser, Cambridge (1996)zbMATHGoogle Scholar
  9. 9.
    Zhao L.: Energy identities for Dirac-harmonic maps. Calc. Var. PDE 28, 121–138 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Zhu, M.: Dirac-harmonic maps from degenerating spin surfaces I: the Neveu–Schwarz case. arxiv: 0803. 3723.Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Max-Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations