Properties of periodic Hartree–Fock minimizers

Article

Abstract

We study the periodic Hartree–Fock model used for the description of electrons in a crystal. The existence of a minimizer was previously shown by Catto et al. (Ann Inst H Poincaré Anal Non Linéaire 18(6):687–760, 2001). We prove in this paper that any minimizer is necessarily a projector and that it solves a certain nonlinear equation, similarly to the atomic case. In particular we show that the Fermi level is either empty or totally filled.

Mathematics Subject Classification (2000)

49S05 36P30 81Q10 81V55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V.: Error bound for the Hartree–Fock energy of atoms and molecules. Comm. Math. Phys. 147(3), 527–548 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76(1–2), 3–389 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bach V., Lieb E.H., Loss M., Solovej J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)CrossRefGoogle Scholar
  4. 4.
    Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, Ph., Le Bris, C. (eds.) Handbook of Numerical Analysis, vol. X. Special Volume: Computational Chemistry. Elsevier, Amsterdam (2003)Google Scholar
  5. 5.
    Cancès É., Deleurence A., Lewin M.: A new approach to the modelling of local defects in crystals: the reduced Hartree–Fock case. Comm. Math. Phys. 281, 129–177 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cancès E., Le Bris C.: On the convergence of SCF algorithms for the Hartree–Fock equations. M2AN Math. Model. Numer. Anal. 34(4), 749–774 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Catto I., Le Bris C., Lions P.-L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(6), 687–760 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)MATHGoogle Scholar
  9. 9.
    Lieb E.H.: Variational principle for Many—Fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53, 185–194 (1977)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lieb E.H., Solovej J.P., Yngvason J.: Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions. Comm. Pure Appl. Math. 47(4), 513–591 (1994)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lions P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. IV, Analysis of Operators. Academic Press, New York (1978)Google Scholar
  15. 15.
    Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1987)MATHGoogle Scholar
  16. 16.
    Thomas L.E.: Time-dependent approach to scattering from impurities in a crystal. Comm. Math. Phys. 33, 335–343 (1973)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Matematica Applicata “Ulisse Dini”Università di PisaPisaItaly
  2. 2.CNRS and Department of Mathematics UMR8088University of Cergy PontoiseCergy Pontoise CedexFrance

Personalised recommendations