Γ-convergence for incompressible elastic plates

  • Sergio Conti
  • Georg Dolzmann


We derive a two-dimensional model for elastic plates as a Γ-limit of three-dimensional nonlinear elasticity with the constraint of incompressibility. The resulting model describes plate bending, and is determined from the isochoric elastic moduli of the three-dimensional problem. Without the constraint of incompressibility, a plate theory was first derived by Friesecke et al. (Comm Pure Appl Math 55:1461–1506, 2002). We extend their result to the case of p growth at infinity with p ϵ [1, 2), and to the case of incompressible materials. The main difficulty is the construction of a recovery sequence which satisfies the nonlinear constraint pointwise. One main ingredient is the density of smooth isometries in W 2,2 isometries, which was obtained by Pakzad (J Differ Geom 66:47–69, 2004) for convex domains and by Hornung (Comptes Rendus Mathematique 346:189–192, 2008) for piecewise C 1 domains.

Mathematics Subject Classification (2000)

74K20 49J45 


  1. 1.
    Adams J., Conti S., DeSimone A., Dolzmann G.: Relaxation of some transversally isotropic energies and applications to smectic A elastomers. Math. Mod. Meth. Appl. Sci. 18, 1–20 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Antman S.S.: Nonlinear Problems in Elasticity, Applied Math. Sciences, vol. 107. Springer, Berlin (1995)Google Scholar
  3. 3.
    Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1977)zbMATHCrossRefGoogle Scholar
  4. 4.
    Belgacem, H.B.: Modélisation de Structures Minces en élasticité Non linéaire. Ph.D. thesis, University of Paris 6 (1996)Google Scholar
  5. 5.
    Ben Belgacem H.: Une méthode de Γ-convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris 323, 845–849 (1996)Google Scholar
  6. 6.
    Conti S., DeSimone A., Dolzmann G.: Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E 66, 061710 (2002)CrossRefGoogle Scholar
  7. 7.
    Conti S., DeSimone A., Dolzmann G.: Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Conti S., Dolzmann G.: Derivation of elastic theories for thin sheets and the constraint of incompressibility. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems., pp. 225–247. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. 9.
    Conti S., Dolzmann G.: Derivation of a plate theory for incompressible materials. C. R. Math. 344, 541–544 (2007)zbMATHMathSciNetGoogle Scholar
  10. 10.
    De Giorgi E.: Sulla convergenza di alcune successioni d’integrali del tipo dell’area. Rend. Mat. (IV) 8, 277–294 (1975)zbMATHMathSciNetGoogle Scholar
  11. 11.
    De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. 8, 842–850 (1975)MathSciNetGoogle Scholar
  12. 12.
    Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  13. 13.
    Fox D.D., Raoult A., Simo J.C.: A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal. 124, 157–199 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Friesecke G., James R., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Friesecke G., James R., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Friesecke G., Müller S., James R.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris 334, 173–178 (2002)zbMATHGoogle Scholar
  17. 17.
    Hornung, P.: A density result for W 2,2 isometric immersions, preprint (2007)Google Scholar
  18. 18.
    Hornung P.: Approximating W 2,2 isometric immersions. C. R. Math. 346, 189–192 (2008)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Kirchheim, B.: Rigidity and geometry of microstructures, MPI-MIS Lecture notes, vol. 16 (2002)Google Scholar
  20. 20.
    LeDret H., Raoult A.: Le modèle de membrane nonlinéaire comme limite variationelle de l’élasticité non linéaire tridimensionelle. C. R. Acad. Sci. Paris 317, 221–226 (1993)MathSciNetGoogle Scholar
  21. 21.
    LeDret H., Raoult A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578 (1995)MathSciNetGoogle Scholar
  22. 22.
    Ogden R.W.: Non-linear Elastic Deformations. Wiley, London (1984)Google Scholar
  23. 23.
    Pakzad M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66, 47–69 (2004)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Pantz O.: Une justification partielle du modèle de plaque en flexion par Γ-convergence. C. R. Acad. Sci. Paris Série I 332, 587–592 (2001)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Pantz O.: On the justification of the nonlinear inextensional plate model. Arch. Rat. Mech. Anal. 167, 179–209 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Trabelsi K.: Incompressible nonlinearly elastic thin membranes. C. R. Acad. Sci. Paris, Ser. I 340, 75–80 (2005)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Trabelsi K.: Modeling of a nonlinear membrane plate for incompressible materials via Gamma-convergence. Anal. Appl. (Singap.) 4, 31–60 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Walter W.: Gewöhnliche Differentialgleichungen, 6th edn. Springer, Berlin (1996)zbMATHGoogle Scholar
  29. 29.
    Warner M., Terentjev E.M.: Liquid Crystal Elastomers. Oxford University Press, Oxford (2003)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sergio Conti
    • 1
  • Georg Dolzmann
    • 2
  1. 1.Fachbereich MathematikUniversität Duisburg-EssenDuisburgGermany
  2. 2.NWF I - MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations