Killing graphs with prescribed mean curvature

  • Marcos Dajczer
  • Pedro A. Hinojosa
  • Jorge Herbert de Lira


It is proved the existence and uniqueness of Killing graphs with prescribed mean curvature in a large class of Riemannian manifolds.

Mathematics Subject Classification (2000)

53C42 53A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alias L. and Dajczer M. (2007). Normal geodesic graphs of constant mean curvature. J. Diff. Geometry 75: 387–401 MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alias L., Dajczer M. and Rosenberg H. (2007). The Dirichlet problem for CMC surfaces in Heisenberg space. Calc. Var. Partial Differ. Equ. 30: 513–522 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Barbosa J.L.M. and Sa Earp R. (1998). Prescribed mean curvature hypersurfaces in H n+1(−1) with convex planar boundary, I. Geom. Dedicata 71: 61–74 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Dajczer M. and Ripoll J. (2005). An extension of a theorem of Serrin to graphs in warped products. J. Geom. Anal. 15: 193–205 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gilbarg D. and Trudinger N. (2001). Elliptic partial differential equations of second order. Springer, Berlin-Heidelberg zbMATHGoogle Scholar
  6. 6.
    Guio E. and Sá Earp R. (2005). Existence and non-existence for a mean curvature equation in hyperbolic space. Commun. Pure Appl. Anal. 4: 549–568 MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Jenkins H. and Serrin J. (1968). The Dirichlet problem for the minimal surface equation in higher dimensions. J. Reine Angew. Math. 229: 170–187 MathSciNetzbMATHGoogle Scholar
  8. 8.
    Li Y.Y. and Nirenberg L. (2005). Regularity of the distance function to the boundary. Rendiconti, Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni 123: 257–264 MathSciNetGoogle Scholar
  9. 9.
    Lira J.H. (2002). Radial graphs with constant mean curvature in the hyperbolic space. Geom. Dedicata 93: 11–23 CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    López R. and Montiel S. (1999). Existence of constant mean curvature graphs in hyperbolic space. Calc. Var. Partial Differ. Equ. 8: 177–190 CrossRefzbMATHGoogle Scholar
  11. 11.
    Nelli B. and Spruck J. (1996). On the Existence and Uniqueness of Constant Mean Curvature Hypersurfaces in Hyperbolic Space. Geometric Analysis and the Calculus of Variations, pp. 253–266. Int. Press, Cambridge Google Scholar
  12. 12.
    Nitsche P. (2002). Existence of prescribed mean curvature graphs in hyperbolic space. Manuscripta Math. 108: 349–367 CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Rosenberg H. (1993). Hypersurfaces of constant curvature in space forms. Bull. Sc. Math. 117: 211–239 zbMATHGoogle Scholar
  14. 14.
    Schoen R. and Yau S.T. (1994). Lectures on Differential Geometry. International Press, Cambridge zbMATHGoogle Scholar
  15. 15.
    Serrin J. (1969). The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. A 264: 413–496 CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Spruck, J.: Interior gradient estimates and existence theorem for constant mean curvature graphs. PreprintGoogle Scholar
  17. 17.
    Treibergs A. and Wei W. (1983). Embedded hyperspheres with prescribed mean curvature. J. Diff. Geometry 18: 513–521 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marcos Dajczer
    • 1
  • Pedro A. Hinojosa
    • 2
  • Jorge Herbert de Lira
    • 3
  1. 1.IMPARio de JaneiroBrazil
  2. 2.Departamento de MatematicaUniversidade Federal da Paraiba-CCEN-DM, Cidade UniversitariaJoão PessoaBrazil
  3. 3.Departamento de MatematicaUniversidade Federal do CearaFortalezaBrazil

Personalised recommendations