Γ-limits and relaxations for rate-independent evolutionary problems

  • Alexander MielkeEmail author
  • Tomáš Roubíček
  • Ulisse Stefanelli


This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals \({\mathcal{E}}\) and the dissipation distance \({\mathcal{D}}\) . For sequences \(({\mathcal{E}}_k)_{k\in {\mathbb{N}}}\) and \(({\mathcal{D}}_k)_{k\in {\mathbb{N}}}\) we address the question under which conditions the limits q of solutions \(q_k : [0, T]\to {\mathcal{Q}}\) satisfy a suitable limit problem with limit functionals \({\mathcal{E}}_\infty\) and \({\mathcal{D}}_\infty\) , which are the corresponding Γ-limits. We derive a sufficient condition, called conditional upper semi-continuity of the stable sets, which is essential to guarantee that q solves the limit problem. In particular, this condition holds if certain joint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator converge if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.

Mathematics Subject Classification (2007)

49J40 49S05 35K90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin, J.-P., Frankowska, H.: Set-valued analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc., Boston (1990)Google Scholar
  2. 2.
    Auricchio, F., Mielke, A., Stefanelli, U.: A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. M3AS Math. Models Meth. Appl. Sci. WIAS Preprint 1170 (2006, submitted)Google Scholar
  3. 3.
    Attouch, H.: Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984)Google Scholar
  4. 4.
    Bartels S., Carstensen S., Hackl K., Hoppe U. (2004). Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193: 5143–5175 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brandon D., Fonseca I., Swart P. (2001). Oscillations in a dynamical model of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(1): 59–81 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Braides, A.: Γ-convergence for beginners. Oxford Lect. Series Math. Appl., vol. 22. Oxford University Press, New York (2002)Google Scholar
  7. 7.
    Brenier Y. (1999). Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52: 411–452 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Brenier Y. (2000). Derivation of the Euler equations from a caricature of Coulomb interaction. Comm. Math. Phys. 212: 93–104 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conti S., Theil F. (2005). Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178: 125–148 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dal Maso G. (1993). An introduction to Γ-convergence. Birkhäuser Boston Inc., Boston Google Scholar
  11. 11.
    Dal Maso G., DeSimone A., Mora M., Morini M. (2007). Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2: 1–36 MathSciNetGoogle Scholar
  12. 12.
    Dal Maso, G., DeSimone, A., Mora, M., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. (2007, to appear)Google Scholar
  13. 13.
    Dal Maso G., Francfort G., Toader R. (2005). Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176: 165–225 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Francfort G., Mielke A. (2006). Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine angew. Math. 595: 55–91 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Giacomini A., Ponsiglione M. (2006). A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Ration. Mech. Anal. 180: 399–447 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Giacomini A., Ponsiglione M. (2006). Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Methods Appl. Sci. 16: 77–118 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Han W., Reddy B.D. (1999). Convergence analysis of discrete approximations of problems in hardeningplasticity. Comput. Methods Appl. Mech. Eng. 171: 327–340 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Han, W., Reddy, B.D., Plasticity (Mathematical Theory and Numerical Analysis). Interdisciplinary Applied Mathematics, vol. 9. Springer, New York (1999)Google Scholar
  19. 19.
    Kružík M., Mielke A., Roubíček T. (2005). Modelling of microstructure and its evolution in shape- memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40: 389–418 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear differential equations (Chvalatice, 1998). Chapman & Hall/CRC Res. Notes Math., vol. 404, pp. 47–110. Chapman & Hall/CRC, Boca Raton, FL (1999)Google Scholar
  21. 21.
    Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. PhD Thesis, IADM, Universität Stuttgart (2005)Google Scholar
  22. 22.
    Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. Archive Rational Mech. Analysis (2007, to appear) (Universität Stuttgart, SFB404 Preprint 2006/2004)Google Scholar
  23. 23.
    Mielke A. (1999). Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. R. Soc. Edinb. Sect. A 129: 85–123 zbMATHMathSciNetGoogle Scholar
  24. 24.
    Mielke A. (2004). Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Eng. 193: 5095–5127 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mielke, A.: Evolution in rate-independent systems (Chap. 6). In: Dafermos C., Feireisl E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)Google Scholar
  26. 26.
    Mielke, A.: A mathematical framework for generalized standard materials in the rate-independent case. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 351–379. Springer, Berlin (2006)Google Scholar
  27. 27.
    Mainik A., Mielke A. (2005). Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22: 73–99 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories of dissipative systems. SAIM Control Optim. Calc. Var. (2007, to appear) WIAS Preprint 1136Google Scholar
  29. 29.
    Mielke M., Roubíček T. (2003). A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1: 571–597 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Mielke, A., Roubíček T.: Numerical approaches to rate-independent processes and applications in inelasticity. M2AN Math. Model. Numer. Anal. (2006, submitted) WIAS Preprint 1169Google Scholar
  31. 31.
    Mielke A., Rossi R. (2007). Existence and uniqueness results for a class of rate-independent hysteresisproblems. M3 AS Math. Models Methods Appl. Sci. 17: 81–123 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mielke, A., Theil F.: On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA), 11, 151–189, (2004) (Accepted July 2001)Google Scholar
  33. 33.
    Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. (2007, to appear) WIAS Preprint 1172Google Scholar
  34. 34.
    Mielke A., Theil F., Levitas V.I. (2002). A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162: 137–177 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Ortiz M., Repetto E., Stainier L. (2000). A theory of subgrain dislocation structures. J. Mech. Phys.Solids 48: 2077–2114 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Ortner, C.: Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38, 1214–1234 (electronic) (2006)Google Scholar
  37. 37.
    Otto F. (1998). Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141: 63–103 zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Sandier E., Serfaty S. (2004). Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math. LVII: 1627–1672 CrossRefMathSciNetGoogle Scholar
  39. 39.
    Stefanelli, U.: The Brezis–Ekeland principle for doubly nonlinear equations. IMATI-CNR Preprint, 41-PV (2006)Google Scholar
  40. 40.
    Stefanelli, U.: Some remarks on convergence and approximation for a class of hysteresis problems. Istit. Lombardo Acad. Sci. Lett. Rend. A (2007, to appear)Google Scholar
  41. 41.
    Stefanelli, U.: A variational principle for hardening elastoplasticity. Preprint IMATI-CNR, n. 11PV07/11/8 (2007)Google Scholar
  42. 42.
    Theil F. (1998). Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation. Arch. Ration. Mech. Anal. 144: 47–78 zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Theil F. (2002). Relaxation of rate-independent evolution problems. Proc. R. Soc. Edinb. Sect. A 132: 463–481 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alexander Mielke
    • 1
    • 2
    Email author
  • Tomáš Roubíček
    • 3
    • 4
  • Ulisse Stefanelli
    • 5
  1. 1.Weierstraß-Institut für Angewandte Analysis und StochastikBerlinGermany
  2. 2.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Mathematical InstituteCharles UniversityPraha 8Czech Republic
  4. 4.Institute of Information Theory and AutomationAcademy of SciencesPraha 8Czech Republic
  5. 5.Istituto di Matematica Applicata e Tecnologie Informatiche-CNRPaviaItaly

Personalised recommendations