The blow up analysis of solutions of the elliptic sinh-Gordon equation

  • Jürgen JostEmail author
  • Guofang Wang
  • Dong Ye
  • Chunqin Zhou
Open Access


In this paper, using a geometric method we show that the blow-up values of the elliptic sinh-Gordon equation are multiples of 8π.

Mathematics Subject Classification (2000)

35J60 58E20 


  1. 1.
    Abresch U. (1987). Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374: 169–192 zbMATHMathSciNetGoogle Scholar
  2. 42.
    Aubin, T.: Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, xviii+395 pp. Springer, Berlin (1998)Google Scholar
  3. 2.
    Bobenko A.I. (1991). All constant mean curvature tori in \({\mathbb{R}}^3, S^3, {\mathbb{H}}^3\) Math. Ann. 290: 209–245 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 3.
    Bobenko, A.I.: Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. Harmonic maps and integrable systems, pp. 83–127, Aspects Math. E23, Vieweg, Braunschweig (1994)Google Scholar
  5. 5.
    Brezis H. and Coron J.-M. (1984). Multiple solutions of H-systems and Rellich’s conjecture. Commun. Pure Appl. Math. 37: 149–187 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brezis H. and Coron J.-M. (1983). Large solutions of harmonic maps in two dimensions. Commun. Math. Phys. 92: 203–215 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brezis H. and Merle F. (1991). Uniform estimates and blow-up behavior for solutions of −Δ uV(x)e u in two dimensions. Commun. Partial Diff. Equ. 16: 1223–1253 CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen X.X. (1999). Remarks on the existence of branch bubbles on the blowup analysis of equation −Δue 2u in dimension two. Commun. Anal. Geom. 7: 295–302 zbMATHGoogle Scholar
  9. 9.
    Chorin A.J. (1994). Vorticity and Turbulence. Springer, New York zbMATHGoogle Scholar
  10. 10.
    Ding W., Jost J., Li J. and Wang G. (1999). Existence results for mean field equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 16: 653–666 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ding W.Y. and Tian G. (1995). Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3: 543–554 zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hélein F. (1991). Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I 312: 591–596 zbMATHGoogle Scholar
  13. 13.
    Hopf, H.: Lectures on differential geometry in the large. Stanford Lecture Notes 1955; reprinted in Lecture Notes in Math. 1000, Springer, Heidelberg (1984)Google Scholar
  14. 14.
    Jost J. (1984). The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with non-constant boundary values. J. Diff. Geom. 19: 393–401 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Jost, J.: Two-dimensional geometric variational problems. Pure and Applied Mathematics (New York), Wiley, Chichester (1991)Google Scholar
  16. 16.
    Jost J. and Wang G. (2001). Analytic aspects of the Toda system. I. A Moser-Trudinger inequality I. A Moser- Trudinger inequality. Commun. Pure Appl. Math. 54: 1289–1319 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jost J., Lin C.S. and Wang G. (2006). Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions. Commun. Pure Appl. Math. 59: 526–558 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Joyce G. and Montgomery D. (1973). Negative temperature states for the two-dimensional guiding-centre plasma. J. Plasma Phys. 10: 107–121 CrossRefGoogle Scholar
  19. 19.
    Li Y.Y. and Shafrir I. (1994). Blow-up analysis for solutions of −Δu = Ve u in dimension two. Indiana Univ. Math. J. 43: 1255–1270 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lin F.H. and Wang C.Y. (1998). Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differ. Equ. 6: 369–380 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lions P.-L. (1997). On Euler Equations and Statistical Physics. Scuola Normale Superiore, Pisa Google Scholar
  22. 22.
    Lucia M. and Nolasco M. (2002). SU(3) Chern-Simons vortex theory and Toda Systems. J. Differ. Equ. 184: 443–474 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Marchioro C. and Pulvirenti M. (1994). Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York zbMATHGoogle Scholar
  24. 24.
    Newton P.K. (2001). The N-Vortex Problem: Analytical Techniques. Springer, New York zbMATHGoogle Scholar
  25. 25.
    Ohtsuka H. and Suzuki T. (2006). Mean field equation for the equilibrium turbulence and a related functional inequality. Adv. Differ. Equ. 11: 281–304 zbMATHMathSciNetGoogle Scholar
  26. 26.
    Parker T.H. (1996). Bubble tree convergence for harmonic maps. J. Differ. Geom. 44: 595–633 zbMATHGoogle Scholar
  27. 27.
    Pinkall U. and Sterling I. (1989). On the classification of constant mean curvature tori. Ann. Math. 130: 407–451 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Pointin Y.B. and Lundgren T.S. (1976). Statistical mechanics of two dimensional vortices in a bounded container. Phys. Fluids 19: 1459–1470 zbMATHCrossRefGoogle Scholar
  29. 29.
    Ricciardi, T.: Mountain pass solutions for a mean field equation from two-dimensional turbulence. ArXiv: math. AP/0612123 (2006)Google Scholar
  30. 30.
    Rivière, T.: Conservation laws for conformal invariant variational problems. ArXiv math. AP/0603380 (2006)Google Scholar
  31. 31.
    Sacks J. and Uhlenbeck K. (1981). The existence of minimal immersions of 2-spheres. Ann. Math. 113: 1–24 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Sawada K., Suzuki T. and Takahashi F. (2007). Mean field equation for equilibrium vortices with neutral orientation. Nonlinear Anal. 66(2): 509–526 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Shafrir I. and Wolansky G. (2005). Moser-Trudinger and logarithmic HLS inequalities for systems. J. Eur. Math. Soc. 7: 413–448 zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Spruck, J.: The elliptic sinh Gordon equation and the construction of toroidal soap bubbles. Calculus of variations and partial differential equations (Trento, 1986), pp. 275–301, Lecture Notes in Math. vol. 1340, Springer, Berlin (1988)Google Scholar
  35. 35.
    Steffen K. (1986). On the nonuniqueness of surfaces with prescribed constant mean curvature spanning a given contour. Arch. Rat. Mech. Anal. 94: 101–122 zbMATHMathSciNetGoogle Scholar
  36. 36.
    Struwe M. (1986). Nonuniqueness in the Plateau problem for surfaces of constant mean curvature. Arch. Rat. Mech. Anal. 93: 135–157 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Struwe M. (1988). Plateau’s problem and the calculus of variations. Mathematical Notes 35. Princeton University Press, Princeton Google Scholar
  38. 38.
    Struwe M. and Tarantello G. (1998). On multivortex solutions in Chern-Simons gauge theory. Boll. Unione M at. Ital. Sez. B Artic. Ric. Mat. 1(8): 109–121 zbMATHMathSciNetGoogle Scholar
  39. 39.
    Wente H. (1969). An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26: 318–344 zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Wente H. (1980). Large solutions of the volume constrained Plateau problem. Arch. Rat. Mech. Anal. 75: 59–77 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Wente H. (1986). Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121: 193–243 zbMATHMathSciNetGoogle Scholar
  42. 42.
    Zhou, C.Q.: Existence of solution for mean field equation for the equilibrium turbulence. Preprint (1986)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jürgen Jost
    • 1
    Email author
  • Guofang Wang
    • 2
  • Dong Ye
    • 3
  • Chunqin Zhou
    • 4
  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Faculty of MathematicsUniversity MagdeburgMagdeburgGermany
  3. 3.Département de Mathématiques, UMR 8088Université de Cergy-PontoiseCergy-PontoiseFrance
  4. 4.Department of MathematicsShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations