Balls have the worst best Sobolev inequalities. Part II: variants and extensions

Original Article

Abstract

We continue our previous study of sharp Sobolev-type inequalities by means of optimal transport, started in (Maggi and Villani J. Geom. Anal. 15(1), 83–121 (2005)). In the present paper, we extend our results in various directions, including Gagliardo–Nirenberg, Faber–Krahn, logarithmic-Sobolev or Moser–Trudinger inequalities with trace terms. We also identify a class of domains for which there is no need for a trace term to cast the Sobolev inequality.

PACS

26D15 35R45 46E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cordero-Erausquin D., Nazaret B. and Villani C. (2004). A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182(2): 307–332 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Del Pino M. and Dolbeault J. (2002). Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9) 81(9): 847–875 MATHMathSciNetGoogle Scholar
  3. 3.
    Escobar J.F. (1988). Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37(3): 687–698 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gromov, M.: Appendix. In: Milman V.D., Schechtman G. (eds.) Asymptotic theory of finite-dimensional normed spaces. Springer, Berlin, (1986)Google Scholar
  5. 5.
    Knothe H. (1957). Contributions to the theory of convex bodies. Michigan Math. J. 4: 39–52 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Maggi F. and Villani C. (2005). Balls have the worst Sobolev inequalities. J. Geom. Anal. 15(1): 83–121 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Moser J. (1970). A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20: 1077–1092 CrossRefGoogle Scholar
  8. 8.
    Nazaret B. (2006). Best constant in Sobolev trace inequalities on the half space. Nonlinear Anal. 65(10): 1977–1985 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Trudinger N.S. (1967). On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17: 473–483 MATHMathSciNetGoogle Scholar
  10. 10.
    Villani, C.: Optimal transport, old and new. In: Lecture notes for the 2005 Saint-Flour Summer SchoolGoogle Scholar
  11. 11.
    Villani, C.: Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di Matematica “U. Dini”Università di FirenzeFirenzeItaly
  2. 2.UMPA, ENS LyonLyon Cedex 07France

Personalised recommendations