Solutions with multiple spike patterns for an elliptic system

Original Article

Abstract

We consider a system of the form \(- \varepsilon^2 \Delta u + V(x)u=g(v)\) , \(-\varepsilon^2 \Delta v + V(x)v=f(u)\) in an open domain \(\Omega\) of \( {\mathbb{R}}^N\) , with Dirichlet conditions at the boundary (if any). We suppose that f and g are power-type non-linearities, having superlinear and subcritical growth at infinity. We prove the existence of positive solutions \(u_{\varepsilon}\) and \(v_{\varepsilon} \) which concentrate, as \(\varepsilon\to 0\) , at a prescribed finite number of local minimum points of V(x), possibly degenerate.

Mathematics Subject Classification (2000)

35J50 58E05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves C.O., Soares S.H.M. (2006). Singularly perturbed elliptic systems. J. Nonlinear Analysis 64: 109–129 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambrosetti A., Badiale M., Cingolani S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140: 285–300 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ávila A.I., Yang J. (2003). On the existence and shape of least energy solutions for some elliptic systems. J. Differential Equations 191: 348–376 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Busca J., Sirakov B. (2000). Symmetry results for semilinear elliptic systems in the whole space. J. Differential Equations 163: 41–56 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Byeon J., Wang Z.Q. (2002). Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165: 295–316 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cao D., Noussair E.S. (2000). Multi-peak solutions for a singularly perturbed semilinear elliptic problem. J.Differential Equations 166: 266–289 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coti Zelati V., Rabinowitz P. (1992). Homoclinic type solutions for semilinear elliptic PDE on \({\mathbb{R}}^N\). Comm. Pure Appl. Math. XLV: 1217–1269 MathSciNetGoogle Scholar
  8. 8.
    Dancer E.N., Wei J. (1999). On the location of spikes of solutions with two sharp layers for a singularly perturbed semillinear Dirichlet problem. J. Differential Equations 157: 82–101 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dancer E.N., Yan S. (1999). Multipeak solutions for a singularly perturbed Neumann problem. Pac. J. Math. 189: 241–262 MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    D’Aprile T., Wei J. (2006). Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem. Ann. Sc. Norm. Super. Pisa 5: 219–259 MATHMathSciNetGoogle Scholar
  11. 11.
    Del Pino M., Felmer P. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations 4: 121–137 MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Del Pino M., Felmer P. (1999). Spike-layered solutions of singularly perturbed semilinear elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48: 883–898 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Del Pino M., Felmer P. (1998). Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15: 127–149 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Del Pino M., Felmer P. (1997). Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149: 245–265 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Del Pino M., Felmer P. (2002). Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324: 1–32 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Floer A., Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69: 397–408 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kavian O. (1993). Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Heidelberg MATHGoogle Scholar
  18. 18.
    Li Y.Y., Nirenberg L. (1998). The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 51: 1445–1490 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ni W.M., yTakagi I. (1993). Locating peaks of least- energy solutions to a semilinear Neumann problem. Duke Math. J. 70: 247–281 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ni W.M., Wei J. (1995). On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48: 731–768 MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oh Y.J. (1990). On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131: 223–253 MATHCrossRefGoogle Scholar
  22. 22.
    Pistoia A., Ramos M. (2004). Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Differential Equations 201: 160–176 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pistoia, A., Ramos, M.: Spike-layered solutions of singularly perturbed elliptic systems. NoDEA Nonlinear Differential Equations Appl (in press) (2007)Google Scholar
  24. 24.
    Rabinowitz P.H. (1992). On a class of nonlinear Schr ödinger equations. Z. Angew Math. Phys. 43: 270–291 MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ramos M., Soares S. (2006). On the concentration of solutions of singularly perturbed Hamiltonian systems in \({\mathbb{R}}^N\). Port. Math. 63: 157–171 MATHMathSciNetGoogle Scholar
  26. 26.
    Ramos M., Yang J. (2005). Spike-layered solutions for an elliptic system with Neumann boundary conditions. Trans. Am. Math. Soc. 357: 3265–3284 MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sirakov B. (2000). On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R}}^N\) Adv. Differential Equations 357: 1445–1464 MathSciNetGoogle Scholar
  28. 28.
    Szulkin A. (1988). Ljusternik-Schnirelmann theory in C 1-manifolds. Ann. Inst. H. Poincaré Anal. Non Lin éaire 5: 119–139 MATHMathSciNetGoogle Scholar
  29. 29.
    Wang X (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153: 229–244 MATHCrossRefGoogle Scholar
  30. 30.
    Willem M. (1996) Minimax theorems. BirkhäuserGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of Lisbon, CMAF, Faculty of ScienceLisboaPortugal

Personalised recommendations