Stable embedded minimal surfaces bounded by a straight line

Original Article


We prove that if \({M\subset \mathbb{R}^3}\) is a properly embedded oriented stable minimal surface whose boundary is a straight line and the area of M in extrinsic balls grows quadratically in the radius, then M is a half-plane or half of the classical Enneper minimal surface. This solves a conjecture posed by B. White in Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, International Press, Somerville, 1996.

Mathematics Subject Classification (1991)

Primary: 53A10 Secondary: 49Q05 Secondary: 53C42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt H.W. (1972). Verzweigungspunkte von H-Flächen (I). Math Z. 127: 333–362 MR0312404, Zbl 0253.58007 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alt H.W. (1973). Verzweigungspunkte von H-Flächen (II). Math. Ann. 201: 33–55 MR0331195, Zbl 0257.58005 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    do Carmo, M., Peng, C.K.: Stable minimal surfaces in \({\mathbb{R}^3}\) are planes. Bull. AMS. 1, 903–906 (1979). MR0546314, Zbl 442.53013Google Scholar
  4. 4.
    Douglas J. (1939). Minimal surfaces of higher topological structure. Ann. Math. 40: 205–298 MR1503457, Zbl 0020.37402 CrossRefGoogle Scholar
  5. 5.
    Finn R. (1965). Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature. J. Anal. Math. 14: 139–160 MR0188909, Zbl 0163.34604 MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fischer-Colbrie D. and Schoen R. (1980). The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Comm. Pure Appl. Math. 33: 99–211 MR0562550, Zbl 439.53060 MathSciNetGoogle Scholar
  7. 7.
    Fleming W.H. (1962). On the oriented Plateau problem. Rend. Circ. Mat. Palermo 11(2): 69–90 MR0157263, Zbl 0107.31304 MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gulliver R. (1973). Regularity of minimizing surfaces of prescribed mean curvature. Ann. Math. 97: 275–305 MR0317188, Zbl 0246.53053 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gulliver R. and Lesley F. (1973). On boundary branch points of minimizing surfaces. Arch. Rational Mech. Anal. 52: 20–25 MR0346641, Zbl 0263.53009 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hardt R. and Simon L. (1976). Boundary regularity and embedded minimal solutions for the oriented Plateau problem. Ann. Math. 110: 439–486 MR0554379, Zbl 0457.49029 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heinz E. and Hildebrandt S. (1970). The number of branch points of surfaces of bounded mean curvature. J. Differ. Geom. 55(4): 227–235 MR0267495, Zbl 0195.23003 MathSciNetGoogle Scholar
  12. 12.
    Hoffman D. and Meeks W.H. (1990). The strong halfspace theorem for minimal surfaces. Invent. Math. 101: 373–377 MR1062966, Zbl 722.53054 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Morgan F. Almost every curve in \({\mathbb{R}^3}\) bounds a unique area-minimizing surface. Invent. Math. 45, 253–297 (1978). MR0513662, Zbl 0378.49028Google Scholar
  14. 14.
    Morgan F. (1987). A Beginner’s Guide to Geometric Measure Theory. Academic Press, New York Google Scholar
  15. 15.
    Osserman R. (1970). A proof of the regularity everywhere to Plateau’s problem. Ann. Math. 91(2): 550–569 MR0266070, Zbl 0194.22302 MathSciNetGoogle Scholar
  16. 16.
    Osserman R. (1986). A Survey of Minimal Surfaces. Dover Publications, New York Google Scholar
  17. 17.
    Rado T. (1930). On Plateau’s problem. Ann. Math. 31(3): 457–469 MR1502955 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Schoen R. (1983). Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds, vol. 103 of Annals of Math. Studies. Princeton University Press, Princeton MR0795231, Zbl 532.53042 Google Scholar
  19. 19.
    White B. (1991). Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on 3-manifolds. J. Diff. Geom. 33(2): 413–443 MR1094464, Zbl 0737.53009 MATHGoogle Scholar
  20. 20.
    White B. (1996). Half of Enneper’s surface minimizes area. In: Jost, J. (eds) Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, pp 361–368. International Press, Somerville MR1449416, Zbl 1039.53018 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Geometry and TopologyUniversity of GranadaGranadaSpain

Personalised recommendations