# Ground state alternative for p-Laplacian with potential term

• Yehuda Pinchover
• Kyril Tintarev
Article

## Abstract

Let Ω be a domain in $$\mathbb{R}^d$$, d  ≥  2, and 1 <  p  <  ∞. Fix $$V \in L_{\mathrm{loc}}^\infty(\Omega)$$. Consider the functional Q and its Gâteaux derivative Q′ given by $$Q(u) := \mathop \int_\Omega (|\nabla u|^p+V|u|^p){\rm d}x,\,\, \frac{1}{p}Q^\prime (u) := -\nabla\cdot(|\nabla u|^{p-2}\nabla u)+V|u|^{p-2}u.$$ If Q  ≥  0 on$$C_0^{\infty}(\Omega)$$, then either there is a positive continuous function W such that $$\int W|u|^p\,\mathrm{d}x\leq Q(u)$$ for all$$u\in C_0^{\infty}(\Omega)$$, or there is a sequence $$u_k\in C_0^{\infty}(\Omega)$$ and a function v > 0 satisfying Q′ (v) = 0, such that Q(u k ) → 0, and $$u_k\to v$$ in $$L^p_\mathrm{loc}(\Omega)$$. In the latter case, v is (up to a multiplicative constant) the unique positive supersolution of the equation Q′ (u) = 0 in Ω, and one has for Q an inequality of Poincaré type: there exists a positive continuous function W such that for every $$\psi\in C_0^\infty(\Omega)$$ satisfying $$\int \psi v\,{\rm d}x \neq 0$$ there exists a constant C > 0 such that $$C^{-1}\int W|u|^p\,\mathrm{d}x\le Q(u)+C\left|\int u \psi\,\mathrm{d}x\right|^p$$. As a consequence, we prove positivity properties for the quasilinear operator Q′ that are known to hold for general subcritical resp. critical second-order linear elliptic operators.

## Keywords

Quasilinear elliptic operator p-Laplacian Ground state Positive solutions Green function Isolated singularity

## Mathematics Subject Classification (2000)

Primary 35J20 Secondary 35J60 35J70 49R50

## References

1. 1.
Agmon, S. On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. in:Methods of Functional Analysis and Theory of Elliptic Equations, (Naples, 1982), pp. 19–52. Liguori, Naples (1983)Google Scholar
2. 2.
Allegretto W., Huang Y.X. (1998) A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal. 32, 819–830
3. 3.
Allegretto W., Huang Y.X. (1999) Principal eigenvalues and Sturm comparison via Picone’s identity. J. Diff. Equ. 156, 427–438
4. 4.
Barbatis G., Filippas S., Tertikas A. (2004) A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356, 2169–2196
5. 5.
Bidaut-Véron, M.-F., Borghol, R., Véron, L. Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations. Calc. Var. Partial Diff. Equ. (to appear)(2006)Google Scholar
6. 6.
Brezis H., Lieb E.H. (1985) Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86
7. 7.
Brezis H., Marcus M. (1997) Hardy’s inequalities revisited, Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4): 217–237
8. 8.
Cycon H.L., Froese R.G., Kirsch W., Simon B. (1987) Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics. Springer, Berlin Heidelberg New YorkGoogle Scholar
9. 9.
del Pino M., Elgueta M., Manasevich R. (1989) A homotopic deformation along p of a Leray-Schauder degree result and existence for $$(|u^{\prime}|^{p-2}u^{\prime})^{\prime}+f(t,u) = 0,\, u(0) = u(T) = 0,\, p > 1$$. J. Diff. Equ. 80, 1–13
10. 10.
DiBenedetto E. (1983) C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850
11. 11.
Drábek P., Girg P., Takáč P., Ulm M. (2004) The Fredholm alternative for the p-Laplacian: bifurcation from infinity, existence and multiplicity. Indiana Univ. Math. J. 53, 433–482
12. 12.
Drábek P., Kufner A., Nicolosi F. (1997) Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter & Co., BerlinGoogle Scholar
13. 13.
Filippas S., Tertikas A. (2002) Optimizing improved Hardy inequalities. J. Funct. Anal. 192, 186–233
14. 14.
Fleckinger-Pellé, J., Hernández, J., Takáč, P., de Thélin, F. Uniqueness and positivity for solutions of equations with the p-Laplacian. In Proceedings of the Conference on Reaction-Diffusion Equations (Trieste, 1995), pp. 141–155. Lecture Notes in Pure and Applied Math. vol. 194. Marcel Dekker, New York (1998)Google Scholar
15. 15.
Fleckinger-Pellé J., Manásevich R.F., Stavrakakis N.M., de Thélin F. (1997) Principal eigenvalues for some quasilinear elliptic equations on $$\mathbb{R}^N$$. Adv. Diff. Equ. 2, 981–1003Google Scholar
16. 16.
Fleckinger-Pellé J., Gossez J.-P., de Thélin F. (2004) Antimaximum principle in $$\mathbb{R}^N$$: local versus global. J. Diff. Equ. 196, 119–133
17. 17.
García-Melián J., Sabina de Lis J. (1998) Maximum and comparison principles for operators involving the p-Laplacian. J. Math. Anal. Appl. 218, 49–65
18. 18.
Gilbarg D., Serrin J. (1955/56) On isolated singularities of solutions of second order elliptic differential equations. J. Anal. Math. 4, 309–340
19. 19.
Guedda M., Véron L. (1988) Local and global properties of solutions of quasilinear elliptic equations. J. Diff. Equ. 76, 159–189
20. 20.
Hardt R., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N. (1999) Critical sets of solutions to elliptic equations. J. Diff. Geom. 51, 359–373
21. 21.
Heinonen J., Kilpeläinen T., Martio O. (1993) Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford University Press, New YorkGoogle Scholar
22. 22.
Jaroš J., Takaŝi K., Yoshida N. (2002) Picone-type inequalities for half-linear elliptic equations and their applications. Adv. Math. Sci. Appl. 12, 709–724
23. 23.
Kichenassamy S., Véron L. (1986) Singular solutions of the p-Laplace equation. Math. Ann. 275, 599–615
24. 24.
Klaus M., Simon B. (1979) Binding of Schrödinger particles through conspiracy of potential wells. Ann. Inst. Henri Poincaré, Sect. A Phys. Théor. 30, 83–87
25. 25.
Marcus M., Shafrir I. (2000) An eigenvalue problem related to Hardy’s L p inequality. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29(4): 581–604
26. 26.
Ovchinnikov Yu.N., Sigal I.M. (1979) Number of bound states of three-body systems and Efimov’s effect. Ann. Phys. 123, 274–295
27. 27.
Pinchover Y. (1988) On positive solutions of second-order elliptic equations, stability results, and classification. Duke Math. J. 57, 955–980
28. 28.
Pinchover Y. (1990) On criticality and ground states of second order elliptic equations, II. J. Diff. Equ. 87, 353–364
29. 29.
Pinchover Y. (1995) On the localization of binding for Schrödinger operators and its extension to elliptic operators. J. Anal. Math. 66, 57–83
30. 30.
Pinchover, Y.On principal eigenvalues for indefinite-weight elliptic problems. In: Spectral and Scattering Theory (Newark, DE, 1997), pp. 77–87. Plenum, New York (1998)Google Scholar
31. 31.
Pinchover Y., Tintarev K. (2005) Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy’s inequality. Indiana Univ. Math. J. 54, 1061–1074
32. 32.
Pinchover Y., Tintarev K. (2006) Ground state alternative for singular Schrödinger operators. J. Funct. Analy. 230, 65–77
33. 33.
Poliakovsky A., Shafrir I. (2005) Uniqueness of positive solutions for singular problems involving the p-Laplacian. Proc. Am. Math. Soc. 133, 2549–2557
34. 34.
Serrin J. (1964) Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302
35. 35.
Serrin J. (1965) Isolated singularities of solutions of quasi-linear equations. Acta Math. 113, 219–240
36. 36.
Simon B. (1980) Brownian motion, L p properties of Schrödinger operators and the localization of binding. J. Funct. Anal. 35, 215–229
37. 37.
Tolksdorf P. (1984) Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equ. 51, 126–150
38. 38.
Véron L. (1996) Singularities of Solutions of Second Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, vol. 353. Longman, Harlow
39. 39.
Ziemer W.P. (1989) Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120. Springer, Berlin Heidelberg New York