On the Existence and the Profile of Nodal solutions of Elliptic Equations Involving Critical Growth

  • Thomas BartschEmail author
  • Anna Maria Micheletti
  • Angela Pistoia


We study the existence of sign changing solutions to the slightly subcritical problem
$$-\Delta u=|u|^{p-1-\epsilon} u\ {\rm in}\ \Omega,\quad u=0\ {\rm on}\ \partial \Omega,$$
where ω is a smooth bounded domain in ℝ N , N ≥ 3, p = (N + 2)/(N − 2) and ɛ > 0. We prove that, for ɛ small enough, there exist N pairs of solutions which change sign exactly once. Moreover, the nodal surface of these solutions intersects the boundary of ω, provided some suitable conditions are satisfied.


Sign changing solutions Nodal domains Critical exponent 


  1. 1.
    Aftalion, A., Pacella, F.: Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Acad. Sci. Paris 339, 339–344 (2004)Google Scholar
  2. 2.
    Atkinson, F.V., Brezis, H., Peletier L.A.: Solutions d'equations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris 306, 711–714 (1988)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atkinson, F.V., Brezis, H., Peletier, L.A.: Nodal solutions of elliptic equations with critical Sobolev exponents, Journ. Diff. Equat. 85, 151–170 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Aubin, T.: Problemes isoperimetriques et espaces de Sobolev, J. Diff. Geom. 11,573–598 (1976)Google Scholar
  5. 5.
    Bahri, A.: Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, Longman, 182 (1989)Google Scholar
  6. 6.
    Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41(3), 253–294 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. 3, 67–93 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bartsch, T.: Critical point theory on partially ordered Hilbert spaces. J. Funct. Anal. 186, 117–152 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bartsch, T., Clapp, M., Weth, T.: Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation. PreprintGoogle Scholar
  10. 10.
    Bartsch, T., Weth, T.: A note on additional properties of sign changing solutions to superlinear elliptic equations. Top. Meth. Nonlin. Anal. 22, 1–14 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bianchi, G., Egnell, H.: A note on the Sobolev inequality, J. Funct. Anal. 100, 18–24 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36(4), 437–477 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Brézis, H., Peletier, L.A.: Asymptotics for elliptic equations involving critical growth. Partial differential equations and the calculus of variations, Vol. I, 149–192, Progr. Nonlinear Differential Equations Appl. Birkhäuser, Boston, MA 1 (1989)Google Scholar
  14. 14.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42, 271–297 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Castro, A., Clapp, M.: The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16, 579–590 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents J. Funct. Anal. 69, 298–306 (1986)CrossRefMathSciNetGoogle Scholar
  17. 17.
    del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron's problem. Calc. Var. 16(2), 113–145 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Flucher, M., Wei, J.: Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots. Manuscripta Math. 94, 337–346 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fortunato, D., Jannelli, E.: Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Royal Soc. Edin. 105, 205–213 (1987)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg (1998)Google Scholar
  21. 21.
    Giusti, E.: Equazioni ellittiche del secondo ordine, Quaderni U.M.I., Pitagora Editrice, Bologna (1978)Google Scholar
  22. 22.
    Han, Z.C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Anal. Non Lin. 8, 159–174 (1991)zbMATHGoogle Scholar
  23. 23.
    Hebey, E., Vaugon, M.: Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal. 119, 298–318 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Hirano, N., Micheletti, A.M., Pistoia, A.: Existence of changing-sign solutions for some critical problems on ℝN. Comm. Pure Appl. Anal. 4, 143–164 (2005)Google Scholar
  25. 25.
    Kazdan, J., Warner, F.W.: Remarks on some quasilinear elliptic equations. Comm. Pure Appl. Math. 28, 567–597 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Micheletti, A.M., Pistoia, A.: On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity 17(3), 851–866 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving critical Sobolev exponent, Indiana Univ. Math. J. 5, 541–579 (2002)MathSciNetGoogle Scholar
  28. 28.
    Noussair, E.S., Wei, J.: On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems. Indiana Univ. Math. J. 46, 1255–1271 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Pohožaev, S.I.: On the eigenfunctions of the equation Δ uf(u) = 0. (Russian) Dokl. Akad. Nauk SSSR 165, 36–39 (1965)Google Scholar
  30. 30.
    Rey, O.: Blow-up points of solutions to elliptic equations with limiting nonlinearity. Differential Integral Equations 4, 1155–1167 (1991)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Rey, O.: The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89, 1–52 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Rey, O.: Proof of two conjectures of H. Brezis and L.A. Peletier. Manuscripta Math. 65, 19–37 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Talenti, G.: Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110, 353–372 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Wei, J., Winter, M.: Symmetry of nodal solution for singularly perturbed elliptic problems on a ball, Indiana Univ. Math. J. 54, 707–741 (2005)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas Bartsch
    • 1
    Email author
  • Anna Maria Micheletti
    • 2
  • Angela Pistoia
    • 3
  1. 1.Mathematisches InstitutJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Dipartimento di Matematica Applicata“U.Dini”, Università di PisaPisaItaly
  3. 3.Dipartimento di Metodi e Modelli MatematiciUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations