Existence of infinitely many solutions for the one-dimensional Perona-Malik model

Original Article

Abstract

We establish the existence of infinitely many weak solutions for the the one-dimensional version of the well-known and widely used Perona-Malik anisotropic diffusion equation model in image processing. We establish the existence result under the homogeneous Neumann condition with smooth non-constant initial values. Our method is to convert the problem into a partial differential inclusion problem.

Keywords

Perona-Malik model One-dimensional Infinitely many solutions Differential inclusion Relaxation property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev spaces. Academic Press (1975)Google Scholar
  2. 2.
    Aubin, J.P., Cellina, A.: Differential inclusions: set-valued maps and viability theory. Springer-Verlag (1984)Google Scholar
  3. 3.
    Aubert, G., Kornprobst, P.: Mathematical problems in image processing. Partial differential equations and the calculus of variations. Applied Mathematical Sciences, vol. 147. New York, Springer (2002)Google Scholar
  4. 4.
    Alvarez, L., Guichard, F., Lions, P.L., Morel, S.M.: Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal 123, 199–257 (1993)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bellettini, G., Fusco, G.: A regularized Perona-Malik functional: some aspects of the gradient dynamics. Preprint (1993)Google Scholar
  6. 6.
    Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100, 13–52 (1987)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructures and the two-well problem. Phil. Royal Soc. Lon. 338A, 389–450 (1992)CrossRefGoogle Scholar
  8. 8.
    Caselles, V., Morel, J. (eds): Special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Processing 7(3) (1998)Google Scholar
  9. 9.
    Dacorogna, B., Marcellini, P.: General existence theorems for Hamilton-Jacobi Equations in the scalar and vectorial cases. Acta Mathematica 178, 1–37 (1997)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dacorogna, B., Marcellini, P.: Implicit partial differential equations. Progress in Nonlinear Differential Equations and their Applications, vol. 37. Birkhäuser (1999)Google Scholar
  11. 11.
    Dacorogna, B., Pisante, G.: A general existence theorem for differential inclusions in the vector valued case. Preprint (2004)Google Scholar
  12. 12.
    Esedoglu, S.: An analysis of the Perona-Malik scheme. Comm. Pure Appl. Math. 54, 1442–1487 (2001)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall (1964)Google Scholar
  14. 14.
    Gromov, M.: Partial differential relations. Springer-Verlag (1986)Google Scholar
  15. 15.
    Höllig, K.: Existence of infinitely many solutions for a forward backward heat equation. Trans. Amer. Math. Soc. 278, 299–316 (1983)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Horstmann, D., Painter, K.J., Othmer, H.G.: Aggregation under local reinforcement, from lattice to continuum. Eur. J. Appl. Math. 15, 545–576 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kichenassamy, S.: The Pernoa-Malik paradox. SIAM J. Appl. Math 57, 1328–1342 (1997)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kirchheim, B.: Rigidity and Geometry of Microstructures. MPI for Mathematics in the Sciences Leipzig, Lecture notes (http://www.mis.mpg.de/preprints/ln/lecturenote-1603.pdf) (2003)
  19. 19.
    Kawohl, B., Kutev, N.: Maximum and comparision principle for one-dimensional anisotropic diffusion. Math. Ann 311, 107–123 (1998)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lieberman, G.M.: Second order parabolic differential equations. Singapore, London: World Scientific (1996)Google Scholar
  21. 21.
    Ladyzenskaya, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Nauka, Moscow (1967)Google Scholar
  22. 22.
    Morini, M., Negri, M.: Mumford-Shah functional as Γ-limit of discrete Perona-Malik energies. Math. Models Methods Appl. Sci 13, 785–805 (2003)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration. In: Jost, J. (ed.) Geometric analysis and the calculus of variations, pp. 239–251. International Press (1996)Google Scholar
  24. 24.
    Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. Doc. Math. J. DMV, Extra Vol. ICM 98, pp. 691–702Google Scholar
  25. 25.
    Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999)CrossRefMATHGoogle Scholar
  26. 26.
    Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math 157, 715–742 (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Müller, S., Sychev, M.A.: Optimal existence theorems for nonhomogeneous differential inclusions. J. Funct. Anal. 181, 447–475 (2001)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell 12, 629–639 (1990)CrossRefGoogle Scholar
  29. 29.
    Sapiro, G.: Geometric partial differential equations and image analysis. Cambridge: Cambridge University Press (2001)CrossRefMATHGoogle Scholar
  30. 30.
    Sychev, M.A.: Comparing two methods of resolving homogeneous differential inclusions. Calc. Var. PDEs 13, 213–229 (2001)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Taheri, S., Tang, Q., Zhang, K.: Young measure solutions and instability of the one-dimensional Perona-Malik equation. J. Math. Anal. Appl. 308, 467–490 (2005)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Weickert, J.: Anisotropic diffusion in image processing. ECMI Series, Teubner, Stuttgart (1998)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SussexBrightonUK

Personalised recommendations