Fourth order approximation of harmonic maps from surfaces

Article

Abstract

Let \((M^2,g)\)be a compact Riemannian surface and let \((N^n,h)\)be a compact Riemannian manifold, both without boundary, and assume that N is isometrically embedded into some ℝl. We consider a sequence \(u_\epsilon \in C^\infty (M,N) (\epsilon \to 0\) of critical points of the functional \(E_\epsilon(u)= \int_M (|Du|^2+\epsilon |\Delta u|^2)\) with uniformly bounded energy. We show that this sequence converges weakly in \(W^{1,2}(M,N)\) and strongly away from finitely many points to a smooth harmonic map. One can perform a blow-up to show that there separate at most finitely many non-trivial harmonic two-spheres at these finitely many points. Finally we prove the so called energy identity for this approximation in the case that \(N=S^{l-1} \) ↪ ℝl.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezis, H., Coron, J.-M.: Convergence of solutions of H-systems or how to blow bubbles. Arch. Ration. Mech. Anal. 89, 21–56 (1985)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Chen, J., Tian, G.: Compactification of moduli space of harmonic mappings. Comm. Math. Helv. 74, 201–237 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Chen,Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)MathSciNetMATHGoogle Scholar
  5. 5.
    Ding, W.Y., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3,543–554 (1995)MathSciNetMATHGoogle Scholar
  6. 6.
    Duzaar, F., Kuwert, E.: Minimization of conformally invariant energies in homotopy classes. Calc. Var. Partial Differ. Eqn. 6, 285–313 (1998)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension. Preprint (2005)Google Scholar
  8. 8.
    Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312, 591–596 (1991)MATHGoogle Scholar
  9. 9.
    Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, vol. 150 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  10. 10.
    Jost, J.: Two-dimensional geometric variational problems. John Wiley and Sons, Chichester (1991)MATHGoogle Scholar
  11. 11.
    Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Comm. Anal. Geom. 10, 307–339 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Lamm, T.: Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom. 26, 369–384 (2004)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Lin, F.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. 149, 785–829 (1999)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Lin, F., Rivière, T.: A quantization property for static Ginzburg-Landau vortices. Comm. Pure Appl. Math. 54, 206–228 (2001)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Lin, F., Rivière, T.: A quantization property for moving line vortices. Comm. Pure Appl. Math. 54, 826–850 (2001)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Lin, F., Rivière, T.: Energy quantization for harmonic maps. Duke Math. J. 111, 177–193 (2002)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Lin, F., Wang, C.: Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differ. Eqn. 6, 369–380 (1998)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Lin, F., Wang, C.: Harmonic and quasi-harmonic spheres. Comm. Anal. Geom. 7, 397–429 (1999)MathSciNetMATHGoogle Scholar
  19. 19.
    Lin, F., Wang, C.: Harmonic and quasi-harmonic spheres II. Comm. Anal. Geom. 10, 341–375 (2002)MathSciNetMATHGoogle Scholar
  20. 20.
    Lin, F., Wang, C.: Harmonic and quasi-harmonic spheres III. Ann. Inst. H. Poincare Anal. Non Lineaire 19, 209–259 (2002)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Lin, F., Yang, X.: Geometric Measure Theory—An Introduction, vol. 1 of Advanced Mathematics (Beijing/Boston). Science Press, Beijing (2002)Google Scholar
  22. 22.
    Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44, 595–633 (1996)MATHGoogle Scholar
  23. 23.
    Peetre, J.: Nouvelles propriétés d'espaces d'interpolation. C. R. Acad. Sci. Paris 256, 1424–1426 (1963)MathSciNetMATHGoogle Scholar
  24. 24.
    Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3, 297–315 (1995)MathSciNetMATHGoogle Scholar
  25. 25.
    Qing, J., Tian, G.: Bubbling of the heat flow for harmonic maps from surfaces. Comm. Pure Appl. Math. 50, 295–310 (1997)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Rivière, T.: Interpolation spaces and energy quantization for Yang-Mills fields. Comm. Anal. Geom. 10, 683–708 (2002)MathSciNetMATHGoogle Scholar
  27. 27.
    Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Annals of Math. 113, 1–24 (1981)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Shatah, J.: Weak solutions and development of singularities of the SU(2) σ-model. Comm. Pure Appl. Math. 41, 459–469 (1988)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Stein, E.: Harmonic Analysis, vol. 43 of Princeton Mathematical Series. Princeton University Press (1993)Google Scholar
  30. 30.
    Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comm. Math. Helv. 60, 558–581 (1985)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Struwe, M.: Variational Methods, vol. 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. third edition, Springer Verlag, Berlin (2000)Google Scholar
  32. 32.
    Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1, 479–500 (1998)MathSciNetMATHGoogle Scholar
  33. 33.
    Topping, P.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247, 279–302 (2004)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Tian, G.: Gauge theory and calibrated geometry. I. Ann. of Math. 151, 193–268 (2000)CrossRefMATHGoogle Scholar
  35. 35.
    Wang, C.: Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets. Houston J. Math. 22, 559–590 (1996)MathSciNetMATHGoogle Scholar
  36. 36.
    Wang, C.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ. Eqn. 21, 221–242 (2004)MATHGoogle Scholar
  37. 37.
    Ziemer, W.: Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Mathematisches Institut der Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations