Compactness of solutions to the Yamabe problem. II

  • YanYan LiEmail author
  • Lei Zhang


System Theory Yamabe Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, A.D.: Uniqueness theorems for surfaces in the large. V, Vestnik Leningrad Univ. Mat. Mekh. Astronom 13, 5-8 (1958): Amer. Math. Soc. Transl. 21, 412-416 (1962)Google Scholar
  2. 2.
    Ambrosetti, A., Azorero, J.G., Peral, I.: Perturbation of \(\Delta u+u^{(N+2)/(N-2)}=0\), the scalar curvature problem in \({\mathbb R}^N\), and related topics. J. Funct. Anal. 165, 117-149 (1999)CrossRefGoogle Scholar
  3. 3.
    Ambrosetti, A., Li, Y.Y., Malchiodi, A.: On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann. 322, 667-699 (2002)CrossRefGoogle Scholar
  4. 4.
    Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269-296 (1976)Google Scholar
  5. 5.
    Arkinson, F.V., Peletier, L.A.: Elliptic equations with nearly critical growth. J. Differential Equations 70, 349-365 (1987)CrossRefGoogle Scholar
  6. 6.
    Aubin, T.: Some nonlinear problems in Riemannian geometry (Springer Monographs in Mathematics). Springer, Berlin 1998Google Scholar
  7. 7.
    Aubin, T., Bahri, A.: Méthodes de topologie algébrique pour le probléme de la courbure scalaire prescrite. J. Math. Pures Appl. 76, 525-549 (1997)CrossRefGoogle Scholar
  8. 8.
    Aubin, T., Bahri, A.: Une hypothése topologique pour le probléme de la courbure scalaire prescrite. J. Math. Pures Appl. 76, 843-850 (1997)CrossRefGoogle Scholar
  9. 9.
    Bahri, A.: Another proof of the Yamabe conjecture for locally conformally flat manifolds. Nonlinear Anal. 20, 1261-1278 (1993)CrossRefGoogle Scholar
  10. 10.
    Bahri, A., Brezis, H.: Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent. Topics in geometry, 1-100, Progr. Nonlinear Differential Equations Appl., 20, Birkhduser Boston, Boston, MA 1996Google Scholar
  11. 11.
    Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41, 253-294 (1988)Google Scholar
  12. 12.
    Bahri, A., Coron, J.-M.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95, 106-172 (1991)CrossRefGoogle Scholar
  13. 13.
    Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39, 661-693 (1986)Google Scholar
  14. 14.
    Bartolucci, D.: A compactness result for periodic multivortices in the electroweak theory. Nonlinear Anal. 53, 277-297 (2003)CrossRefGoogle Scholar
  15. 15.
    Bartolucci, D., Chen, C.C., Lin, C.S., Tarantello, G.: Profile of blow-up solutions to mean field equations with singular data. PreprintGoogle Scholar
  16. 16.
    Bartolucci, D., Tarantello, G.: Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229, 3-47 (2002)CrossRefGoogle Scholar
  17. 17.
    Bartolucci, D., Tarantello, G.: The Liouville equation with singular data: a concentration-compactness principle via a local representation formula. J. Differential Equations 185, 161-180 (2002)CrossRefGoogle Scholar
  18. 18.
    Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22, 1-37 (1991)CrossRefGoogle Scholar
  19. 19.
    Bianchi, G., Egnell, H.: An ODE approach to the equation \(\Delta u+K u^{(n+2)/(n-2)}=0\) in Rn. Math. Z. 210, 137-166 (1992)Google Scholar
  20. 20.
    Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. PreprintGoogle Scholar
  21. 21.
    Brezis, H., Li, Y.Y., Shafrir, I.: A \(\sup + \inf \) inequality for some nonlinear elliptic equations involving exponential nonlinearities. J. Functional Analysis 115, 344-358 (1993)CrossRefGoogle Scholar
  22. 22.
    Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^u\) in two dimension. Comm. Partial Differtial Equation 16, 1223-1253 (1991)Google Scholar
  23. 23.
    Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437-477 (1983)Google Scholar
  24. 24.
    Brezis, H., Peletier, L.A.: Asymptotics for elliptic equations involving critical growth. In: Partial differential equations and the calculus of variations, Vol. I, pp. 149-192. Progr. Nonlinear Differential Equations Appl., 1, Birkhäuser Boston, Boston, MA 1989Google Scholar
  25. 25.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271-297 (1989)Google Scholar
  26. 26.
    Caffarelli, L., Hardt, R., Simon, L.: Minimal surfaces with isolated singularities. Manuscripta Math. 48, 1-18 (1984)CrossRefGoogle Scholar
  27. 27.
    Cao, J.: The existence of generalized isothermal coordinates for higher-dimensional Riemannian manifolds. Trans. Amer. Math. Soc. 324, 901-920 (1991)Google Scholar
  28. 28.
    Chang, K.C., Liu, J.: On Nirenberg’s problem. Int. J. Math. 4, 35-58 (1993)CrossRefGoogle Scholar
  29. 29.
    Chang, S.Y.A., Yang, P.: Prescribing Gaussian curvature on \(S\sp 2\). Acta Math. 159, 215-259 (1987)Google Scholar
  30. 30.
    Chang, S.Y.A., Yang, P.: Conformal deformation of metrics on \(S\sp 2\). J. Differential Geom. 27, 259-296 (1988)Google Scholar
  31. 31.
    Chang, S.Y.A., Yang, P.: A perturbation result in prescribing scalar curvature on Sn. Duke Math. J. 64, 27-69 (1991)CrossRefGoogle Scholar
  32. 32.
    Chang, S.Y.A., Gursky, M., Yang, P.: The scalar curvature equation on 2- and 3-spheres. Calc. Var. Partial Differential Equations 1, 205-229 (1993)CrossRefGoogle Scholar
  33. 33.
    Chen, C.C., Lin, C.S.: A sharp \(\sup + \inf\) inequality for a nonlinear elliptic equation in \(\Bbb R^2\). Comm. Anal. Geom. 6, 1-19 (1998)Google Scholar
  34. 34.
    Chen, C.C., Lin, C.S.: Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. 50, 971-1017 (1997)CrossRefGoogle Scholar
  35. 35.
    Chen, C.C., Lin, C.S.: Estimates of the conformal scalar curvature equation via the method of moving planes. II. J. Diff. Geom. 49, 115-178 (1998)Google Scholar
  36. 36.
    Chen, C.C., Lin, C.S.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm. Pure Appl. Math. 55, 728-771 (2002)CrossRefGoogle Scholar
  37. 37.
    Chen, C.C., Lin, C.S.: Topological degree for a mean field equation on Riemann surfaces. Comm. Pure Appl. Math. 56, 1667-1727 (2003)CrossRefGoogle Scholar
  38. 38.
    Chen, W.: Scalar curvature on Sn. Math. Ann. 283, 353-365 (1989)CrossRefGoogle Scholar
  39. 39.
    Chen, W., Ding, W.: A problem concerning the scalar curvature on \(\Bbb S^2 \). Kexue Tongbao 33, 533-537 (1988)Google Scholar
  40. 40.
    Chen, W., Li, C.: A priori estimates for prescribing scalar curvature equations. Ann. of Math. 145, 547-564 (1997)Google Scholar
  41. 41.
    Chen, X.: Remarks on the existence of branch bubbles on the blowup analysis of equation \(-\Delta u=e\sp {2u}\) in dimension two. Comm. Anal. Geom. 7, 295-302 (1999)Google Scholar
  42. 42.
    Cherrier, P.: Probléme de Neumann non linéaires sur les variétés Riemanniennes. J. Funct. Anal. 57, 154-206 (1984)CrossRefGoogle Scholar
  43. 43.
    Ding, W., Ni, W.-M.: On the elliptic equation \(\Delta u+K u^{(n+2)/(n-2)}=0\) and related topics. Duke Math. J. 52, 485-506 (1985)CrossRefGoogle Scholar
  44. 44.
    Druet, O.: From one bubble to several bubbles. The low-dimensional case. Journal of Differential Geometry 63, 399-473 (2003)Google Scholar
  45. 45.
    Druet, O.: Compactness for Yamabe metrics in low dimensions. Int. Math. Res. Not. 23, 1143-1191 (2004)CrossRefGoogle Scholar
  46. 46.
    Escobar, J.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature. Ann. of Math. 136, 1-50 (1992)Google Scholar
  47. 47.
    Escobar, J.: The Yamabe problem on manifolds with boundary. J. Diff. Geom. 35, 21-84 (1992)Google Scholar
  48. 48.
    Escobar, J.: Conformal deformation of a Riemannian metric to a constant scalar curvature metric with constant mean curvature on the boundary. Indiana Univ. Math. J. 45, 917-943 (1996)CrossRefGoogle Scholar
  49. 49.
    Escobar, J., Garcia, G.: Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary. J. Funct. Anal. 211, 71-152 (2004)CrossRefGoogle Scholar
  50. 50.
    Escobar, J., Schoen, R.: Conformal metrics with prescribed scalar curvature. Invent. Math. 86, 243-254 (1986)CrossRefGoogle Scholar
  51. 51.
    Felli, V., Ould Ahmedou, M.: Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries. Math. Z. 244, 175-210 (2003)CrossRefGoogle Scholar
  52. 52.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525-598 (1981)Google Scholar
  53. 53.
    Günther, M.: Conformal normal coordinates. Ann. Global Anal. Geom. 11, 173-184 (1993)CrossRefGoogle Scholar
  54. 54.
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209-243 (1979)CrossRefGoogle Scholar
  55. 55.
    Han, Z.C.: Prescribing Gaussian curvature on S2. Duke Math. J. 61, 679-703 (1990)CrossRefGoogle Scholar
  56. 56.
    Han, Z.C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 159-174 (1991)Google Scholar
  57. 57.
    Han, Z.C., Li, Y.Y.: The Yamabe problem on manifolds with boundaries: Existence and compactness results. Duke Math. J. 99, 489-542 (1999)CrossRefGoogle Scholar
  58. 58.
    Han, Z.C., Li, Y.Y.: The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature. Comm. Anal. Geom. 8, 809-869 (2000)Google Scholar
  59. 59.
    Hebey, E.: Changements de métriques conformes sur la sphére, Le probléme de Nirenberg. Bull. Sci. Math. 114, 215-242 (1990)Google Scholar
  60. 60.
    Hebey, E., Vaugon, M.: Le probliéme de Yamabe équivariant. Bull. Sci. Math. 117, 241-286 (1993)Google Scholar
  61. 61.
    Hong, C.W.: A best constant and the Gaussian curvature. Proc. Amer. Math. Soc. 97, 737-747 (1986)Google Scholar
  62. 62.
    Kazdan, J., Warner, F.: Scalar curvature and conformal deformations of Riemannian structure. J. Diff. Geom. 10, 113-134 (1975)Google Scholar
  63. 63.
    Lee, J., Parker, T.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17, 37-91 (1987)Google Scholar
  64. 64.
    Li, A., Li, Y.Y.: On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math. 56, 1414-1464 (2003)Google Scholar
  65. 65.
    Li, A., Li, Y.Y.: On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. arXiv:math.AP/0403442 v1 25 Mar 2004Google Scholar
  66. 66.
    Li, Y.Y.: Prescribing scalar curvature on Sn and related problems, Part I. J. Diff. Equations 120, 319-410 (1995)CrossRefGoogle Scholar
  67. 67.
    Li, Y.Y.: Prescribing scalar curvature on Sn and related problems, Part II: Existence and compactness. Comm. Pure Appl. Math. 49, 541-597 (1996)CrossRefGoogle Scholar
  68. 68.
    Li, Y.Y.: A Harnack type inequality: the method of moving planes. Comm. Math. Phys. 200, 421-444 (1999)CrossRefGoogle Scholar
  69. 69.
    Li, Y.Y., Zhang, L.: Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique 90, 27-87 (2003)Google Scholar
  70. 70.
    Li, Y.Y., Zhang, L.: A Harnack type inequality for the Yamabe equation in low dimensions. Calc. Var. and PDEs 20, 133-151 (2004)CrossRefGoogle Scholar
  71. 71.
    Li, Y.Y., Zhang, L.: Compactness of solutions to the Yamabe problem. C. R. Math. Acad. Sci. Paris 338, 693-695 (2004)Google Scholar
  72. 72.
    Li, Y.Y., Zhang, L.: Compactness of solutions to the Yamabe problem. III. In preparationGoogle Scholar
  73. 73.
    Li, Y.Y., Zhu, M.: Yamabe type equations on three dimensional Riemannian manifolds. Communications in Contemporary Math. 1, 1-50 (1999)CrossRefGoogle Scholar
  74. 74.
    Li, Y.Y., Shafrir, I.: Blow up analysis for solutions of \(-\Delta u = Ve^u\) in dimension two. Indiana Univ. Math. J. 43, 1255-1270 (1994)CrossRefGoogle Scholar
  75. 75.
    Marques, F.C.: A priori estimates for the Yamabe problem in the non-locally conformally flat case. arXiv:math.DG/0408063 v1 4 Aug 2004Google Scholar
  76. 76.
    Moser, J.: On a nonlinear problem in differential geometry. In: Peixoto, M. (ed.) Dynamical systems, pp, 273-280. Academic Press, New York 1973Google Scholar
  77. 77.
    Nirenberg, L.: Topics in nonlinear functional analysis. Courant Lecture Notes in Mathematics 6, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001Google Scholar
  78. 78.
    Prajapat, J., Ramaswamy, M.: A priori estimates for solutions of “sub-critical” equations on CR sphere. Adv. Nonlinear Stud. 3, 355-395 (2003)Google Scholar
  79. 79.
    Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geom. 20, 479-495 (1984)Google Scholar
  80. 80.
    Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Giaquinta, M. (ed.) Topics in Calculus of Variations. Lecture Notes in Mathematics, Vol. 1365 120154. Springer, Berlin Heidelberg New York 1989Google Scholar
  81. 81.
    Schoen, R.: Courses at Stanford University, 1988, and New York University, 1989Google Scholar
  82. 82.
    Schoen, R.: On the number of constant scalar curvature metrics in a conformal class. In: Lawson, H.B., Tenenblat, K. (eds.) Differential geometry: a symposium in honor of Manfredo Do Carmo, pp. 311-320. Wiley, New York 1991Google Scholar
  83. 83.
    Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in General Relativity. Comm. Math. Phys. 65, 45-76 (1979)CrossRefGoogle Scholar
  84. 84.
    Schoen, R., Zhang, D.: Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Differential Equations 4, 1-25 (1996)Google Scholar
  85. 85.
    Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304-318 (1971)CrossRefGoogle Scholar
  86. 86.
    Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for “large” energies. J. Reine Angew. Math. 562, 59-100 (2003)Google Scholar
  87. 87.
    Siu, Y-T.: The existence of K\”shler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. Math. 127, 585-627 (1988)Google Scholar
  88. 88.
    Tarantello, G.: An Harnack inequality for Liouville-type equations with singular sources. PreprintGoogle Scholar
  89. 89.
    Tarantello, G.: A quantization property for blow up solutions of singular Liouville-type equation. PreprintGoogle Scholar
  90. 90.
    Tian, G.: A Harnack type inequality for certain complex Monge-Ampére equations. J. Differ. Geom. 29, 481-488 (1989)Google Scholar
  91. 91.
    Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Cl. Sci. (3) 22, 265-274 (1968)Google Scholar
  92. 92.
    Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21-37 (1960)Google Scholar
  93. 93.
    Ye, R.: Global existence and convergence of Yamabe flow. J. Diff. Geom. 39, 35-50 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations