Advertisement

A minimum problem with free boundary for a degenerate quasilinear operator

  • Donatella Danielli
  • Arshak Petrosyan
Article

Abstract.

In this paper we prove \(C^{1,\alpha}\) regularity (near flat points) of the free boundary \(\partial\{u > 0\}\cap\Omega\) in the Alt-Caffarelli type minimum problem for the p-Laplace operator: \(J(u)=\int_\Omega\left( |\nabla u|^p + \lambda^p\chi_{\{u>0\}}\right)dx\rightarrow \min\qquad (1<p<\infty).\)

Keywords

System Theory Minimum Problem Free Boundary Type Minimum Quasilinear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acker, A.: Heat flow inequalities with applications to heat flow optimization problems. SIAM J. Math. Anal. 4, 604-618 (1977)CrossRefGoogle Scholar
  2. 2.
    Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105-144 (1981)Google Scholar
  3. 3.
    Alt, H.W., Caffarelli, L.A., Friedman, A.: A free boundary problem for quasilinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(4), 1-44 (1984)Google Scholar
  4. 4.
    Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Uniform estimates for regularization of free boundary problems. Analysis and partial differential equations. Lecture Notes in Pure and Appl. Math., vol. 122, pp. 567-619. Dekker, New York 1990Google Scholar
  5. 5.
    Beurling, A.: On free-boundary problems for the Laplace equation. Seminars on analytic functions, vol. I, pp. 248-263. Inst. Advanced Study, Princeton, NJ 1957Google Scholar
  6. 6.
    Danielli, D., Petrosyan, A., Shahgholian, H.: A singular perturbation problem for the p-Laplace operator. Indiana Univ. Math. J. 52, 457-476 (2003)Google Scholar
  7. 7.
    Federer, H.: Geometric measure theory. Springer, New York 1969Google Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin 1983Google Scholar
  9. 9.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press Oxford University Press, New York 1993Google Scholar
  10. 10.
    Henrot, A., Shahgholian, H.: Existence of classical solutions to a free boundary problem for the p-Laplace operator. I. The exterior convex case. J. Reine Angew. Math. 521, 85-97 (2000)Google Scholar
  11. 11.
    Henrot, A., Shahgholian, H.: Existence of classical solutions to a free boundary problem for the p-Laplace operator. II. The interior convex case. Indiana Univ. Math. J. 49(1), 311-323 (2000)Google Scholar
  12. 12.
    Kinderlehrer, D., Nirenberg, L., Spruck, J.: Regularity in elliptic free boundary problems. J. Analyse Math. 34, 86-119 (1978)Google Scholar
  13. 13.
    Lacey, A.A., Shillor, M.: Electrochemical and electro-discharge machining with a threshold current. IMA J. Appl. Math. 39(2), 121-142 (1987)Google Scholar
  14. 14.
    Malý, J., Ziemer, W.P.: Fine regularity of solutions of elliptic partial differential equations. Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI 1997Google Scholar
  15. 15.
    Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721-747 (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations