Rank-one convex hulls in \(\mathbb{R}^{2\times2}\)

Article

Abstract.

We study the rank-one convex hull of compact sets \(K\subset\mathbb{R}^{2\times2}\). We show that if K contains no two matrices whose difference has rank one, and if K contains no four matrices forming a T4 configuration, then the rank-one convex hull Krc is equal to K. Furthermore, we give a simple numerical criterion for testing for T4 configurations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, R.J., Hart, S.: Bi-convexity and bi-martingales. Israel J. Math. 54, 159-180 (1986)MATHMathSciNetGoogle Scholar
  2. 2.
    Ball, J.M.: Does rank-one convexity imply quasiconvexity? In: Metastability and incompletely posed problems (Minneapolis, Minn., 1985), vol. 3 of IMA Vol. Math. Appl., pp. 17-32. Springer, New York 1987Google Scholar
  3. 3.
    Casadio Tarabusi, E.: An algebraic characterization of quasi-convex functions. Ricerche Mat. 42, 11-24 (1993)MATHMathSciNetGoogle Scholar
  4. 4.
    Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proc. Sympos. Pure Math., Vol. VII, pp. 101-180. Amer. Math. Soc., Providence, R.I. 1963Google Scholar
  5. 5.
    Kirchheim, B.: Rigidity and Geometry of microstructures. Habilitation thesis, University of Leipzig (2003)Google Scholar
  6. 6.
    Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. In: Hildebrandt, S., Karcher, H. (eds.) Gemetric analysis and Nonlinear partial differential equations, pp. 347-395. Springer, Berlin Heidelberg New York 2003Google Scholar
  7. 7.
    Kolář, J.: Non-compact lamination convex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(3), 391-403 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Matoušek, J.: On directional convexity. Discrete Comput. Geom. 25, 389-403 (2001)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discrete Comput. Geom. 19, 105-130 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Morrey, C.B. Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25-53 (1952)MATHMathSciNetGoogle Scholar
  11. 11.
    Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices 20, 1087-1095 (1999)CrossRefGoogle Scholar
  12. 12.
    Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of variations and geometric evolution problems (Cetraro, 1996), vol. 1713. Lecture Notes in Math., pp. 85-210, Springer, Berlin 1999Google Scholar
  13. 13.
    Nesi, V., Milton, G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525-542 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pedregal, P.: Laminates and microstructure. European J. Appl. Math. 4, 121-149 (1993)MATHMathSciNetGoogle Scholar
  15. 15.
    Scheffer, V.: Regularity and irregularity of solutions to nonlinear second order elliptic systems and inequalities. Dissertation, Princeton University (1974)Google Scholar
  16. 16.
    Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120(1-2), 185-189 (1992)Google Scholar
  17. 17.
    Šverák, V.: On Tartar’s conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 405-412 (1993)MATHGoogle Scholar
  18. 18.
    Tartar, L.: Some remarks on separately convex functions. In: Microstructure and phase transition, IMA Vol. Math. Appl., vol. 54, pp. 191-204. Springer, New York 1993Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute for Advanced Study,PrincetonUSA

Personalised recommendations