Advertisement

On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems

Article

Abstract.

This paper concerns with a family of inhomogeneous Neumann boundary value problems having indefinite nonlinearities which depend on a real parameter \(\lambda\). We discuss the existence and the multiplicity of positive solutions with respect to \(\lambda\). Developing the fibering method further, we can introduce a constructive concept of the calculation of certain nonlocal intervals \((\lambda_j, \lambda_{j + 1}) \subseteq \mathbb{R}\), the so-called sufficient intervals of the existence. Then we are able to prove some new results on the existence and the multiplicity of positive solutions \(u_{\lambda}\) for \(\lambda \in (\lambda_j, \lambda_{j + 1})\).

Keywords

System Theory Neumann Boundary Real Parameter Constructive Concept Sufficient Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti, A., Brezis, H., Cerami G.: Combined effect of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal., 122, 519-543 (1994)Google Scholar
  2. 2.
    Alama S., Tarantello G.: On semilinear elliptic problems with indefinite nonlinearities. Calc. Var. 1, 439-475 (1993)MathSciNetMATHGoogle Scholar
  3. 3.
    Alama S., Tarantello G.: Elliptic problems with nonlinearity in sign. J. Funct. Anal., 141, 159-215 (1996)Google Scholar
  4. 4.
    Azorero, J.G., Alonso I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc. 323, 877-895 (1991)MATHGoogle Scholar
  5. 5.
    Azorero, J.G., Montefusco, E., Peral, I.: Bifurcation for the p-Laplacian in \(\mathbb{R}^N\). Adv. Diff. Eq. 5, 435-464 (2000)MATHGoogle Scholar
  6. 6.
    Azorero, J.G., Peral, I.: Some results about the existence of second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43, 941-957 (1994)MATHGoogle Scholar
  7. 7.
    Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorem. Topological Methods in Nonlinear Analysis 4, 59-78 (1994)MathSciNetMATHGoogle Scholar
  8. 8.
    Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. NoDEA 2, 553-572 (1995)MathSciNetMATHGoogle Scholar
  9. 9.
    Coleman, S., Glazer, V., Martin, A.: Action minima among solution to a class of Euclidean scalar field equations. Comm. Math. Phys. 58(2), 211-221 (1978)Google Scholar
  10. 10.
    Del Pino, M.: Positive solutions of a semilinear elliptic equation on a compact manifold. Nonlinear Anal. 22(11), 1423-1430 (1994)CrossRefMATHGoogle Scholar
  11. 11.
    Del Pino, M., Felmer P.L.: Multiple solutions for a semilinear elliptic equation. Trans. Amer. Math. Soc. 347(12), 4839-4853 (1995)MATHGoogle Scholar
  12. 12.
    Drábek, P., Pohozaev, S.I.: Positive solution for the p-Laplacian: application of the fibering method. Proc. Roy. Soc. Edinb. Sect. A 127, 703-726 (1997)MathSciNetGoogle Scholar
  13. 13.
    Il’yasov, Y.: Euler’s functional for equations involving the p-Laplacian as a functional of the spectral parameter. Proc. Stekl. Ins. Math. 214, 175-186 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Il’yasov, Y.: On positive solutions of indefinite elliptic equations. C. R. Acad. Sci., Paris 332, Série I,, p. 1-6 (2001)Google Scholar
  15. 15.
    Il’yasov, Y., Runst, T.: Existence and multiplicity results for a class of non-linear Neumann boundary value problems. Jenaer Schriften zur Mathematik und Informatik, Univ. Jena, Math/Inf/99/14, 1-23.Google Scholar
  16. 16.
    Il’yasov, Y.: On a procedure of projective fibering of functionals on Banach spaces. Proc. Steklov Inst. Math. 232, 150-156 (2001)MathSciNetMATHGoogle Scholar
  17. 17.
    Ouyang, T.C.: On the positive solutions of semilinear equations \(\Delta u+\lambda u+hu^p=0\) on the compact manifolds. Indiana Univ. Math. J. 40, 1083-1141 (1991)MathSciNetMATHGoogle Scholar
  18. 18.
    Pierotti, D., Terracini, S.: On a Neumann problem with critical exponent and critical nonlinearity on the boundary. Comm. Part. Diff. Equations 20, 1155-1187 (1995)MathSciNetMATHGoogle Scholar
  19. 19.
    Pohozaev, S.I.: On an approach to Nonlinear equations. Doklady Acad. Sci. USSR 247, 1327-1331 (1979)Google Scholar
  20. 20.
    Pohozaev, S.I.: On the method of fibering a solution in nonlinear boundary value problems. Proc. Stekl. Ins. Math. 192, 157-173 (1990)Google Scholar
  21. 21.
    Pohozaev, S.I., Véron, L.: Multiple positive solutions of some quasilinear Neumann problems. Applicable Analysis. 74, 363-391 (2000)MathSciNetMATHGoogle Scholar
  22. 22.
    Struwe, M.: Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin Heidelberg New-York 1996Google Scholar
  23. 23.
    Tarantello, G.: Multiplicity results for an inhomogeneous Neumann problems with critical exponent. Manuscr. Math., 81, 57-78 (1993)Google Scholar
  24. 24.
    Tehrani, H.T.: On indefinite superlinear elliptic equations. Calc. Var. 4, 139-153 (1996)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721-747 (1967)MATHGoogle Scholar
  26. 26.
    Vazquez, J.L., Véron, L.: Solutions positives d’ éuations elliptiques semi-linéaires sur des variétés riemanniennes compactes. C. R. Acad. Sci., Paris 312, pp. 811-815 (1991)Google Scholar
  27. 27.
    Véron, L.: Premiére valeur propre non nulle du p-laplacien et équations quasilinéaires elliptiques sur une variété riemannienne compacte. C. R. Acad. Sci., Paris 314, pp. 271-276 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Mathematical DepartmentBashkir State UniversityUfaRussia

Personalised recommendations