Convex functions on the Heisenberg group

  • Guozhen LuEmail author
  • Juan J. Manfredi
  • Bianca Stroffolini


Convex functions in Euclidean space can be characterized as universal viscosity subsolutions of all homogeneous fully nonlinear second order elliptic partial differential equations. This is the starting point we have chosen for a theory of convex functions on the Heisenberg group.


Differential Equation Partial Differential Equation Euclidean Space Convex Function Heisenberg Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, O., Lasry, J. M., Lions, P. L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. 9 (76), 265-288 (1997)Google Scholar
  2. 2.
    Ambrosio, L., Magnani, V.: Some fine properties of BV functions on Sub-Riemannian groups. Preprint n. 2, Scuola Normale Superiore, Pisa, Febbraio 2002Google Scholar
  3. 3.
    Bellaï che, A., Risler, J.-J. (eds.): Sub-Riemannian geometry. Progress in Mathematics, Vol. 144, Birkhäuser 1996Google Scholar
  4. 4.
    Bieske, T.: On \(\infty-\)harmonic functions on the Heisenberg group. Comm. in Partial Differential Equations 27, 727-762 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Cabré, X.: Personal communicationGoogle Scholar
  6. 6.
    Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations. AMS colloquium publications, Vol. 43. AMS, Providence, RI 1995Google Scholar
  7. 7.
    Crandall, M.: Viscosity solutions: a primer. Lecture Notes in Mathematics 1660, pp. 1-43. Springer, Berlin Heidelberg New York 1997Google Scholar
  8. 8.
    Crandall, M., Evans C., Lions, P. L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. of Amer. Math. Soc. 282, 487-502, (1984)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Crandall, M., Ishii, H., Lions, P. L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. of Amer. Math. Soc. 27, 1-67 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Danielli, D., Garofalo, N., Nhieu, D.: Notions of convexity in Carnot groups. PreprintGoogle Scholar
  11. 11.
    Evans, L. C.: Estimates for smooth absolutely minimizing Lipschitz extensions. Electronic Journal of Differential Equations 3, 1-10 (1993)Google Scholar
  12. 12.
    Evans, L. C.: Partial differential equations. Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI 1998Google Scholar
  13. 13.
    Evans, C., Gariepy, R.: Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press LLC 1992Google Scholar
  14. 14.
    Folland, G. B., Stein, E. M.: Hardy spaces on homogeneous groups. Princeton University Press, Princeton, NJ 1982Google Scholar
  15. 15.
    Gaveau, B.: Principle de moindre action, propagation de la chaleur, et estimées souselliptiques sur certain groups nilpotents. Acta Mathematica 139, 95-153 (1977)zbMATHGoogle Scholar
  16. 16.
    Gutierrez, C.: The Monge-Ampére equation. Progress in nonlinear differential equations and their applications 44. Birkhäuser, Boston, MA 2001Google Scholar
  17. 17.
    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford University Press, New York 1993Google Scholar
  18. 18.
    Jensen, R.: The maximum principle for viscosity solutions of second order fully nonlinear partial differential equations. Arch. Rat. Mech. Analysis 101, 1-27 (1988)MathSciNetGoogle Scholar
  19. 19.
    Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123, 51-74 (1993)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Juutinen, P., Lindqvist, P., Manfredi, J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. of Math. Anal. 33, 699-717 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lanconelli, E., Uguzzoni, F.: On the Poisson kernel for the Kohn Laplacian. Rend. Mat. Appl. (7) 17 (1997), 659-677 (1998)Google Scholar
  22. 22.
    Lindqvist, P., Manfredi, J.: The Harnack inequality for \(\infty\)-harmonic functions. Electronic Journal of Differential Equations 4, (1995) approx. 5pp. (electronic)Google Scholar
  23. 23.
    Lindqvist, P., Manfredi, J.: Note on \(\infty\)-harmonic functions. Revista Matemática de la Universidad Complutense 10, 471-480 (1997)zbMATHGoogle Scholar
  24. 24.
    Lindqvist, P., Manfredi, J., Saksman, E.: Superharmonicity of nonlinear ground states. Rev. Mat. Iberoamericana 16, 17-28 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lu, G.: Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations. Publicacions Matemátiques 40, 301-329 (1996)zbMATHGoogle Scholar
  26. 26.
    Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Revista Matematica Iberoamericana 8, 367-439 (1992)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Manfredi, J.: Fully nonlinear subelliptic equations. Available at Scholar
  28. 28.
    Manfredi, J., Stroffolini B.: A version of the Hopf-Lax Formula in the Heisenberg group. Comm. in Partial Differential Equations 27, 1139-1159 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathéodory spaces. Calc. Var. 13, 339-376 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Nagel, A., Stein, E., Wainger, S.: Balls and metrics defined by vector fields I: Basic Properties. Acta Mathematica 55, 103-147 (1985)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • Guozhen Lu
    • 1
    Email author
  • Juan J. Manfredi
    • 1
  • Bianca Stroffolini
    • 1
  1. 1.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations