Subelliptic harmonic maps from Carnot groups

  • Changyou Wang
Original Paper


For subelliptic harmonic maps from a Carnot group into a Riemannian manifold without boundary, we prove that they are smooth near any \(\epsilon\)-regular point (see Definition 1.3) for sufficiently small \(\epsilon > 0\). As a consequence, any stationary subelliptic harmonic map is smooth away from a closed set with zero HQ-2 measure. This extends the regularity theory for harmonic maps (cf. [SU], [Hf], [El], [Bf]) to this subelliptic setting.


Riemannian Manifold Regular Point Regularity Theory Carnot Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50, 719--746 (2001)MATHGoogle Scholar
  2. 2.
    Bethuel, F.: On the singular set of stationary harmonic maps. Manu. Math. 78, 417--443 (1993)MathSciNetMATHGoogle Scholar
  3. 3.
    Bony, J.: Principe du maximum inégalité de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19, 227--304 (1969)Google Scholar
  4. 4.
    Coifman, R., Lions, P., Meyers, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. math. Pures. Appl. 72, 699--734 (1993)Google Scholar
  5. 5.
    Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer. J. Math. 118, 1153--1196 (1997)MATHGoogle Scholar
  6. 6.
    Capogna, L., Danielli, D., Garofalo, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom. 2, 203--215 (1994)Google Scholar
  7. 7.
    Citti, G., Garofalo, N., Lanconelli, E.: Harnack's inequality for sum of squares plus potential. Amer. J. Math. 115, 699--734 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Capogna, L., Garofalo, N.: Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type. To appear in J. Eur. Math. Soc.Google Scholar
  9. 9.
    Capogna, L.: Regularity for quasilinear equations and \(1\)-quasiconformal maps in Carnot groups. Math. Ann. 313, 263--295 (1999)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Chanillo, S.: Sobolev inequalities involving divergence free maps. Comm. PDE 16, 1969--1994 (1991)MathSciNetMATHGoogle Scholar
  11. 11.
    Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. AMS, 83(4), 569--645 (1977)Google Scholar
  12. 12.
    Chang, A., Wang, L., Yang, P.: Regularity of harmonic maps. CPAM 52(9), 1099--1111 (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Evans, L., Gariepy, R.: Measure Theory and Fine properties of Functions. CRC press 1992Google Scholar
  14. 14.
    Evans, L.: Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Mech. Anal. 116, 101--113 (1991)MathSciNetMATHGoogle Scholar
  15. 15.
    Eells, J., Sampson, J.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 85, 109--160 (1964)Google Scholar
  16. 16.
    Folland, G.: A fundamental solution for a subelliptic operator. Bull. AMS 79, 373--376 (1973)MATHGoogle Scholar
  17. 17.
    Folland, G.: Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv. Mat. 13, 161--207 (1975)MATHGoogle Scholar
  18. 18.
    Fefferman, C., Phong, D.: Subelliptic eigenvalue problems. Proceedings of Conference on Harmonic Analysis, in honor of A. Zygmund. Wadsworth Math. Series, 590--606 (1981)Google Scholar
  19. 19.
    Fefferman, C., Stein, E.: Hardy spaces of several variables. Acta Math. 129, 137--193 (1972)MATHGoogle Scholar
  20. 20.
    Folland, G., Stein, E.: Hardy spaces on homogeneous groups. Math. Notes, vol. 28, Princeton Univ. Press, Princeton, NJ 1982Google Scholar
  21. 21.
    Giaquinta, M., Giusti, E.: Nonlinear elliptic systems with quadratic growth. Manu. Math. 24, 323--349 (1978)MATHGoogle Scholar
  22. 22.
    Giaquinta, M., Giusti, E.: On the regularity of minima of variational integrals. Acta Math. 142, 31--46 (1982)MathSciNetGoogle Scholar
  23. 23.
    Gromov, M.: Carnot-Carthéodory spaces seen from within. Sub-Rieman. Geometry, Ed. A. Bellaiche, J. Risler, Progress in Mathematics 114 (1996), Birkhäuser, BaselGoogle Scholar
  24. 24.
    Grafakos, L., Rochberg, R.: Compensated compactness and the Heisenberg group. Math. Ann. 301, 601--611 (1995)MathSciNetMATHGoogle Scholar
  25. 25.
    Hélein, F.: Régularité des applications harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris 312, 591--596 (1991)MathSciNetMATHGoogle Scholar
  26. 26.
    Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000)Google Scholar
  27. 27.
    Hildebrandt, S., Kaul, H., Widman, K.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1--16 (1977)MATHGoogle Scholar
  28. 28.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147--171 (1967)Google Scholar
  29. 29.
    Hamilton, R.: Harmonic maps of manifolds with boundary. Springer LNM 471 (1975)Google Scholar
  30. 30.
    Hajlasz, P., Strzelecki, P.: Subelliptic \(p\)-harmonic maps into spheres and the ghost of Hardy spaces. Math. Ann. 312, 341--362 (1998)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Martin, G., Iwaniec, T.: Quasiregular mappings in even dimensions. Acta Math. 170, 29--81 (1993)MathSciNetMATHGoogle Scholar
  32. 32.
    Jerison, D.: Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J. 53, 503--523 (1986)MathSciNetMATHGoogle Scholar
  33. 33.
    John, F., Nirenberg, L.: On functions of bounded mean oscillations. CPAM. 14, 415--426 (1961)MATHGoogle Scholar
  34. 34.
    Jost, J., Xu, J.: Subelliptic harmonic maps. Trans. AMS, 350(11), 4633--4649 (1998)Google Scholar
  35. 35.
    Lu, G.: The sharp Poincaré inequality for free vector fields: An endpoint result. Rev. Mat. Ibe. 10, 453--466 (1994)MathSciNetMATHGoogle Scholar
  36. 36.
    Müller, S.: Higher integrability of determinants and weak convergence in \(L^1\). J. Reine Angew. Math. 412, 20--34 (1990)Google Scholar
  37. 37.
    Nagel, A., Stein, E., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103--147 (1985)MathSciNetMATHGoogle Scholar
  38. 38.
    Price, P.: A monotonicity formula for Yang-Mills fields. Manu. Math. 43, 131--166 (1983)MathSciNetMATHGoogle Scholar
  39. 39.
    Riviére, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175, 197--226 (1995)MathSciNetGoogle Scholar
  40. 40.
    Rothschild, L., Stein, E.: Hypoelliptic operators and nilpotent Lie groups. Acta Math. 137, 247--320 (1977)MATHGoogle Scholar
  41. 41.
    Sánchez-Calle, A.: Fundamental solutions and geometry of the sums of squares of vector fields. Invent. Math. 78, 143--160 (1984)Google Scholar
  42. 42.
    Semmes, S.: A primer on Hardy spaces and some remarks on a theorem of Evans and Müller. Comm. PDE 19, 277--319 (1994)MathSciNetMATHGoogle Scholar
  43. 43.
    Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Diff. Geom. 17, 307--335 (1982)MathSciNetMATHGoogle Scholar
  44. 44.
    Varopoulos, T., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Univ. Press, 1992Google Scholar
  45. 45.
    Varadarajan, V.: Lie groups, Lie algebras and Their Representation. Prentice Hall, New York, 1974Google Scholar
  46. 46.
    Xu, J.: Regularity for quasilinear second order subelliptic equations. CPAM 45, 77--96 (1992)MathSciNetMATHGoogle Scholar
  47. 47.
    Xu, J., Zuily, C.: Higher interior regularity for quasilinear subelliptic systems. Cal. Var. 5, 323--343 (1997)CrossRefMATHGoogle Scholar
  48. 48.
    Zhou, Z.: Uniqueness of subelliptic harmonic maps. Ann. Global Anal. Geom. 17, 581--594 (1999)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA

Personalised recommendations