Skip to main content
Log in

Lidstone-type problems on the whole real line and homoclinic solutions applied to infinite beams

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This work provides sufficient conditions for the existence of solutions to fourth-order nonlinear ordinary differential equations with Lidstone-type boundary conditions on the real line. Using Green’s functions, we formulate a modified integral equation and correspondent integral operators, in which fixed points are the solutions of the initial problem. Moreover, it is proved that every solution of the Lidstone problem on the whole real line is an homoclinic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams G, Lin L (1986) Beam on a tensionless elastic foundation. J Eng Mech 113:542–553

    Google Scholar 

  2. Agarwal RP, Wong PJ (2012) Eigenvalues of complementary Lidstone boundary value problems. Bound Value Probl 2012:49

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal RP, Wong PJ (2012) Positive solutions of complementary Lidstone boundary value problems. Electron J Qual Theory Differ Equ 2012:60

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai Z, Ge W (2003) Solutions of 2nth Lidstone boundary value problems and dependence on higher order derivatives. J Math Anal Appl 279:442–450

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen YY, Chen SH, Zhao W (2017) Constructing explicit homoclinic solution of oscillators: an improvement for perturbation procedure based on nonlinear time transformation. Commun Nonlinear Sci Numer Simul 48:123–139

    Article  MathSciNet  Google Scholar 

  6. Chen YY, Yan LW, Su RKL, Liu B (2017) Generalization of hyperbolic perturbation solution for heteroclinic orbits of strongly nonlinear self-excited oscillator. J Vib Control 23(19):3071–3091

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis JM, Henderson J, Wong P (2000) General Lidstone problems: multiplicity and symmetry of solutions. J Math Anal Appl 251:527–548

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding Y, Wei Z, Xu J (2012) Positive solutions for a higher order p-Laplacian boundary value problem with even derivatives. Int J Open Probl Comput Math 5(2):48–61

    Article  Google Scholar 

  9. Ehme J, Henderson J (2000) Existence and local uniqueness for nonlinear Lidstone boundary value problems. J Inequal Pure Appl Math 1(1), Article 8, 1–9

  10. Eloe P (2000) Nonlinear eigenvalue problems for higher order Lidstone boundary value problems. Electron J Differ Equ 2(2000):1–8

    MATH  Google Scholar 

  11. Eloe P, Henderson J, Thompson H (2000) Extremal points for impulsive Lidstone boundary value problems. Math Comput Model 32:687–698

    Article  MathSciNet  MATH  Google Scholar 

  12. Fialho J, Minhós F (2009) Existence and location results for hinged beams with unbounded nonlinearities. Nonlinear Anal 71:e1519–e1525

    Article  MATH  Google Scholar 

  13. Fialho J, Minhós F (2013) The role of lower and upper solutions in the generalization of Lidstone problems. Discrete Contin Dyn Syst Suppl 2013:217–226

    MathSciNet  MATH  Google Scholar 

  14. Guo Y, Ge W (2004) Twin positive symmetric solutions for Lidstone boundary value problems. Taiwan J Math 8:271–283

    Article  MathSciNet  MATH  Google Scholar 

  15. Jang TS (2013) A new semi-analytical approach to large deflections of Bernoulli–Euler-v.Karman beams on a linear elastic foundation: nonlinear analysis of infinite beams. Int J Mech Sci 66:22–32

    Article  Google Scholar 

  16. Jang TS, Baek HS, Paik JK (2011) A new method for the nonlinear deflection analysis of an infinite beam resting on a nonlinear elastic foundation. Int J Non-Linear Mech. 46(1):339–366

    Article  Google Scholar 

  17. Jurkiewicz M, Przeradzki B (2015) Existence of solutions for higher order BVP with paprameters via critical point theory. Demonstr Math XLVIII(1):53–61

    MathSciNet  MATH  Google Scholar 

  18. Lazer AC, Mckenna PJ (1990) Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev 32:537–578

    Article  MathSciNet  MATH  Google Scholar 

  19. Lidstone GJ (1929) Notes on the extension of Aitken’s theorem (for polynomial interpolation) to the Everett types. Proc Edinb Math Soc 2:16–19

    Article  MATH  Google Scholar 

  20. Ma Y (2006) Existence of positive solutions of Lidstone boundary value problems. J Math Anal Appl 314:97–108

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma R, An Y (2010) Global structure of positive solutions for superlinear 2nth-boundary value problems. Czechoslov Math J 60(135):161–172

    Article  MATH  Google Scholar 

  22. Maheshwari P, Khatri S (2012) Nonlinear analysis of infinite beams on granular bed-stone column-reinforced earth beds under moving loads. Soils Found 52(1):114–125

    Article  Google Scholar 

  23. Mallik AK, Chandra S, Sarvesh S, Avinash B (2006) Steady-state response of an elastically supported infinite beam to a moving load. J Sound Vib 291:1148–1169

    Article  Google Scholar 

  24. Minhós F (2019) Heteroclinic solutions for classical and singular \(\phi \)-Laplacian non-autonomous differential equations. Axioms 8:22

    MATH  Google Scholar 

  25. Minhós F, de Sousa R (2019) Existence of homoclinic solutions for second order coupled systems. J Differ Equ 266:1414–1428

    Article  MathSciNet  MATH  Google Scholar 

  26. Minhós F, Gyulov T, Santos AI (2005) Existence and location result for a fourth order boundary value problem. Discrete Contin Dyn Syst 2005(suppl.):662–671

    MathSciNet  MATH  Google Scholar 

  27. Momoya Y, Etsuo S, Tatsuoka F (2005) Deformation characteristics of railway roadbed and subgrade under moving-wheel load. Soils Found 45(4):99–118

    Article  Google Scholar 

  28. Przeradzki B (1992) The existence of bounded solutions for differential equations in Hilbert spaces. Ann Pol Math LVI 2:103–121

    Article  MathSciNet  MATH  Google Scholar 

  29. Smets D, van den Berg JB (2002) Homoclinic solutions for Swift–Hohenberg and suspension bridge type equations. J Differ Equ 184:78–96

    Article  MathSciNet  MATH  Google Scholar 

  30. Vrabel R (2016) Formation of boundary layers for singularly perturbed fourth-order ordinary differential equations with the Lidstone boundary conditions. J Math Anal Appl 440:65–73

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Y-M (2005) Higher-order Lidstone boundary value problems for elliptic partial differential equations. J Math Anal Appl 308:314–333

    Article  MathSciNet  MATH  Google Scholar 

  32. Wong PJY (2014) Triple solutions of complementary Lidstone boundary value problems via fixed point theorems. Bound Value Probl 2014:125

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao Q (2003) On the positive solutions of Lidstone boundary value problems. Appl Math Comput 137:477–485

    MathSciNet  MATH  Google Scholar 

  34. Zeidler E (1986) Nonlinear functional analysis and its applications, I: fixed-point theorems. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feliz Minhós.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhós, F., Carrasco, H. Lidstone-type problems on the whole real line and homoclinic solutions applied to infinite beams. Neural Comput & Applic 32, 12873–12879 (2020). https://doi.org/10.1007/s00521-020-04732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04732-x

Keywords

Mathematics Subject Classification

Navigation