Advertisement

Neural network approach for solving nonlinear eigenvalue problems of structural dynamics

  • S. K. Jeswal
  • S. ChakravertyEmail author
Original Article

Abstract

This article introduces a novel connectionist approach for dynamic analysis of structural problem. In general, dynamic analysis of structures leads to eigenvalue problems. Sometimes these eigenvalue problems may be nonlinear eigenvalue problem, which may be difficult to address by traditional methods. As such, we have proposed here an artificial neural network (ANN)-based method to handle nonlinear eigenvalue problems. A four-layer ANN architecture has been constructed for handling the eigenvalue problems, and detailed ANN procedure has been included for clear understanding. Two example problems of overdamped spring mass system have been addressed to show the efficacy of the proposed method. Further, convergence plots and tables for different eigenvalues have also been included to validate the proposed ANN procedure.

Keywords

Artificial neural network (ANN) Structural problem Eigenvalue problem Dynamic analysis of structures 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gao W, Yang C, Meza JC (2009) Solving a class of nonlinear eigenvalue problems by Newton’s method (No. LBNL-2187E). Lawrence Berkeley National Lab (LBNL), BerkeleyCrossRefGoogle Scholar
  2. 2.
    Fazeli SA, Rabiei F (2016) Solving nonlinear eigenvalue problems using an improved Newton method. Int J Adv Comput Sci Appl 7(9):438–441Google Scholar
  3. 3.
    Kressner D (2009) A block Newton method for nonlinear eigenvalue problems. Numer Math 114(2):355–372MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sleijpen GLG, Van der Vorst HA (2000) A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev 42(2):267–293MathSciNetCrossRefGoogle Scholar
  5. 5.
    Taseli H, Demiralp M (1988) Studies on algebraic methods to solve linear eigenvalue problems: generalised anharmonic oscillators. J Phys A Math Gen 21(20):3903–3919MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bickford WB (1987) An improved computational technique for perturbations of the generalized symmetric linear algebraic eigenvalue problem. Int J Numer Methods Eng 24(3):529–541MathSciNetCrossRefGoogle Scholar
  7. 7.
    Adiyaman ME, Somali S (2012) A new approach for linear eigenvalue problems and nonlinear Euler buckling problem. Abstr Appl Anal 2012:1–21MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bosch J, Greif C (2017) Numerical solution of linear Eigenvalue problems. Geom Comput Spectr Theory 700:117MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chu MT (1988) A note on the homotopy method for linear algebraic eigenvalue problems. Linear Algebra Appl 105:225–236MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hochstenbach M, Romero E, Roman J (2012) Davidson type subspace expansions for the linear eigenvalue problem. Cahier de Recherche, Universitat politècnica de Valencia, vol 51Google Scholar
  11. 11.
    Rajakumar C (1993) Lanczos algorithm for the quadratic eigenvalue problem in engineering applications. Comput Methods Appl Mech Eng 105(1):1–22MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tisseur F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43(2):235–286MathSciNetCrossRefGoogle Scholar
  13. 13.
    Holz UB, Golub GH, Law KH (2004) A subspace approximation method for the quadratic eigenvalue problem. SIAM J Matrix Anal Appl 26(2):498–521MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bai Z, Su Y (2005) SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J Matrix Anal Appl 26(3):640–659MathSciNetCrossRefGoogle Scholar
  15. 15.
    Misrikhanov MS, Ryabchenko VN (2006) The quadratic eigenvalue problem in electric power systems. Autom Remote Control 67(5):698–720MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hammarling S, Munro CJ, Tisseur F (2013) An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans Math Softw (TOMS) 39(3):18MathSciNetCrossRefGoogle Scholar
  17. 17.
    Massa F, Lallemand B, Tison T (2015) Multi-level homotopy perturbation and projection techniques for the reanalysis of quadratic eigenvalue problems: the application of stability analysis. Mech Syst Signal Process 52(53):88–104CrossRefGoogle Scholar
  18. 18.
    Zheng TS, Liu WM, Cai ZB (1989) A generalized inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis. Comput Struct 33(5):1139–1143MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guo CH, Lancaster P (2005) Algorithms for hyperbolic quadratic eigenvalue problems. Math Comput 74(252):1777–1791MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cai YF, Kuo YC, Lin WW, Xu SF (2009) Solutions to a quadratic inverse eigenvalue problem. Linear Algebra Appl 430(5–6):1590–1606MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li H, Cai Y (2015) Solving the real eigenvalues of hermitian quadratic eigenvalue problems via bisection. Electron J Linear Algebra 30(1):721–743MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hwang TM, Lin WW, Liu JL, Wang W (2005) Jacobi-Davidson methods for cubic eigenvalue problems. Numer Linear Algebra Appl 12(7):605–624MathSciNetCrossRefGoogle Scholar
  23. 23.
    Beyn WJ (2012) An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl 436(10):3839–3863MathSciNetCrossRefGoogle Scholar
  24. 24.
    Demoulin YM, Chen Y (1975) An iteration method for solving nonlinear eigenvalue problems. SIAM J Appl Math 28(3):588–595MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mehrmann V, Voss H (2004) Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitteilungen 27(2):121–152MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sun J, Xu X (2016) Structure of solutions set of nonlinear eigenvalue problems. J Math Anal Appl 435(2):1410–1425MathSciNetCrossRefGoogle Scholar
  27. 27.
    Voss H (2004) An Arnoldi method for nonlinear eigenvalue problems. BIT Numer Math 44(2):387–401MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rabinowitz PH (2009) Variational methods for nonlinear eigenvalue problems. In: Prodi G (ed) Eigenvalues of non-linear problems. Springer, Berlin, pp 139–195CrossRefGoogle Scholar
  29. 29.
    Betcke T, Higham NJ, Mehrmann V, Schröder C, Tisseur F (2013) NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans Math Softw (TOMS) 39(2):7MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lázaro M, Pérez-Aparicio JL (2014) Characterization of real eigenvalues in linear viscoelastic oscillators and the nonviscous set. J Appl Mech 81(2):021016-1–021016-14CrossRefGoogle Scholar
  31. 31.
    Chakraverty S, Mahato NR (2018) Nonlinear interval eigenvalue problems for damped spring-mass system. Eng Comput 35(6):2272–2286CrossRefGoogle Scholar
  32. 32.
    Jeswal SK, Chakraverty S (2018) Solving transcendental equation using artificial neural network. Appl Soft Comput 73:562–571CrossRefGoogle Scholar
  33. 33.
    Jeswal SK, Chakraverty S (2019) Connectionist model for solving static structural problems using fuzzy parameters. Appl Soft Comput 78:221–229CrossRefGoogle Scholar
  34. 34.
    Chakraverty S, Mall S (2017) Artificial neural networks for engineers and scientists: solving ordinary differential equations. CRC Press, Boca RatonCrossRefGoogle Scholar
  35. 35.
    Chakraverty S (2008) Vibration of plates. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations