Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator

  • Himanshu Chhabra
  • Vijay MohanEmail author
  • Asha Rani
  • Vijander Singh
Original Article


The aim of this article is to utilize fractional calculus for performance enhancement of nonlinear fuzzy PD + I controller. A fractional order fuzzy PD + I controller (FOFPD + I) is designed and implemented to control complex, uncertain and nonlinear robotic manipulator. FOFPD + I controller is derived from fractional order PD and fractional order I controller. The proposed control strategy has an adaptive capability due to its nonlinear gains and preserves the linear structure of fractional order PD + I controller. Further, integer-order fuzzy PD + I controller (FPD + I) and conventional PID controllers are also designed for comparative analysis. The optimum parameter values of FOFPD + I, FPD + I and PID controllers are obtained using non-dominated sorting genetic algorithm-II. The effectiveness of proposed controller is examined for reference tracking and disturbance rejection problems of robotic manipulator. The designed controllers are also validated experimentally on DC servomotor. Simulation and experimental results prove the superiority of FOFPD + I controller as compared to its integer-order equivalent and conventional PID controllers for control of robotic manipulator.


FOFPD + I FPD + I NSGA-II Robotic manipulator 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Åström KJ, Hang CC, Persson P, Ho WK (1992) Towards intelligent PID control. Automatica 28:1–9CrossRefGoogle Scholar
  2. 2.
    Bennett S (1993) Development of the PID controller. IEEE Control Syst 13:58–62Google Scholar
  3. 3.
    Åström KJ, Hägglund T (2001) The future of PID control. Control Eng Pract 9:1163–1175CrossRefGoogle Scholar
  4. 4.
    Åström KJ, Hägglund T (2006) Advanced PID control. ISA—the instrumentation, systems, and automation society research Triangle parkGoogle Scholar
  5. 5.
    Mohan V, Chhabra H, Rani A, Singh V (2018) Robust self-tuning fractional order PID controller dedicated to non-linear dynamic system. J Intell Fuzzy Syst 34:1467–1478CrossRefGoogle Scholar
  6. 6.
    Chen G (1996) Conventional and fuzzy PID controllers: an overview. Int J Intell Control Syst 1:235–246MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mohan V, Rani A, Singh V (2017) Robust adaptive fuzzy controller applied to double inverted pendulum. J Intell Fuzzy Syst 32:3669–3687CrossRefGoogle Scholar
  8. 8.
    Lim CM, Hiyama T (1991) Application of fuzzy logic control to a manipulator. IEEE Trans Robot Autom 7:688–691CrossRefGoogle Scholar
  9. 9.
    Yoo BK, Ham WC (2000) Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans Fuzzy Syst 8:186–199CrossRefGoogle Scholar
  10. 10.
    Sooraksa P, Chen G (1998) Mathematical modeling and fuzzy control of a flexible-link robot arm. Math Comput Model 27:73–93CrossRefzbMATHGoogle Scholar
  11. 11.
    Li W, Chang X, Wahl FM, Farrell J (2001) Tracking control of a manipulator under uncertainty by FUZZY P + ID controller. Fuzzy Sets Syst 122:125–137MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tang W, Chen G, Lu R (2001) A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties. Fuzzy Sets Syst 118:109–119MathSciNetCrossRefGoogle Scholar
  13. 13.
    Malki HA, Li H, Chen G (1994) New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Trans Fuzzy Syst 2:245–254CrossRefGoogle Scholar
  14. 14.
    Malki HA, Misir D, Feigenspan D, Chen G (1997) Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans Control Syst Technol 5:371–378CrossRefGoogle Scholar
  15. 15.
    Misir D, Malki HA, Chen G (1996) Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets Syst 79:297–314MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dumlu A, Erenturk K (2014) Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order control. IEEE Trans Ind Electron 61:3417–3426CrossRefGoogle Scholar
  17. 17.
    Valerio D, da Costa JS (2012) An introduction to fractional control, vol 91. Institution of Engineering and Technology (IET), EnglandGoogle Scholar
  18. 18.
    Pan I, Das S (2013) Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int J Electr Power Energy Syst 51:106–118CrossRefGoogle Scholar
  19. 19.
    Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng Appl Artif Intell 25:430–442CrossRefGoogle Scholar
  20. 20.
    Chhabra H, Mohan V, Rani A, Singh V (2016) Multi Objective PSO tuned fractional order PID control of robotic manipulator. In: The international symposium on intelligent systems technologies and applications, pp 567–572Google Scholar
  21. 21.
    Bingül Z, Karahan O (2012) Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turk J Electr Eng Comput Sci 20:1123–1136Google Scholar
  22. 22.
    Monje CA, Vinagre BM, Feliu V, Chen Y (2008) Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng Pract 16:798–812CrossRefGoogle Scholar
  23. 23.
    Gaing Z-L (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391CrossRefGoogle Scholar
  24. 24.
    Wang P, Kwok D (1994) Optimal design of PID process controllers based on genetic algorithms. Control Eng Pract 2:641–648CrossRefGoogle Scholar
  25. 25.
    Vasan A, Raju KS (2009) Comparative analysis of simulated annealing, simulated quenching and genetic algorithms for optimal reservoir operation. Appl Soft Comput 9:274–281CrossRefGoogle Scholar
  26. 26.
    Pan I, Das S (2016) Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans 62:19–29CrossRefGoogle Scholar
  27. 27.
    Mishra P, Kumar V, Rana K (2015) A fractional order fuzzy PID controller for binary distillation column control. Expert Syst Appl 42:8533–8549CrossRefGoogle Scholar
  28. 28.
    Jesus IS, Barbosa RS (2015) Genetic optimization of fuzzy fractional PD + I controllers. ISA Trans 57:220–230CrossRefGoogle Scholar
  29. 29.
    Pan I, Korre A, Das S, Durucan S (2012) Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn 70:2445–2461MathSciNetCrossRefGoogle Scholar
  30. 30.
    Das S, Pan I, Das S (2013) Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans 52:550–566CrossRefGoogle Scholar
  31. 31.
    Mohan V, Chhabra H, Rani A, Singh V (2018) An expert 2DOF fractional order fuzzy PID controller for nonlinear systems. Neural Comput Appl. Google Scholar
  32. 32.
    Ying H, Siler W, Buckley JJ (1990) Fuzzy control theory: a nonlinear case. Automatica 26:513–520MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Craig JJ (2005) Introduction to robotics: mechanics and control, vol 3. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. 34.
    Ayala HVH, dos Santos Coelho L (2012) Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst Appl 39:8968–8974CrossRefGoogle Scholar
  35. 35.
    Goodrich C, Peterson AC (2015) Discrete fractional calculus. Springer, BerlinCrossRefzbMATHGoogle Scholar
  36. 36.
    Kumar V, Rana K (2017) Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. J Frankl Inst 354:993–1022MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17:704–719MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefzbMATHGoogle Scholar
  39. 39.
    Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, New YorkzbMATHGoogle Scholar
  40. 40.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRefGoogle Scholar
  41. 41.
    Pachauri N, Singh V, Rani A (2017) Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production. ISA Trans 68:235–250CrossRefGoogle Scholar
  42. 42.
    Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46:79–95CrossRefGoogle Scholar
  43. 43.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82CrossRefGoogle Scholar
  44. 44.
    Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513CrossRefGoogle Scholar
  45. 45.
    Jain M, Singh V, Rani A (2018) A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol Comput 44:148–175CrossRefGoogle Scholar
  46. 46.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073CrossRefGoogle Scholar
  47. 47.
    Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl-Based Syst 134:50–71CrossRefGoogle Scholar
  48. 48.
    Russell RW, May ML, Soltesz KL, Fitzpatrick JW (1998) Massive swarm migrations of dragonflies (Odonata) in eastern North America. Am Midl Nat 140:325–342CrossRefGoogle Scholar
  49. 49.
    Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML (2006) Simple rules guide dragonfly migration. Biol Lett 2:325–329CrossRefGoogle Scholar
  50. 50.
    De Wit CC, Praly L (2000) Adaptive eccentricity compensation. IEEE Trans Control Syst Technol 8:757–766CrossRefGoogle Scholar
  51. 51.
    Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning, vol 2. Instrument society of America Research, Triangle ParkGoogle Scholar
  52. 52.
    Saleem O, Omer U (2017) EKF-based self-regulation of an adaptive nonlinear PI speed controller for a DC motor. Turk J Electr Eng Comput Sci 25:4131–4141CrossRefGoogle Scholar
  53. 53.
    Quanser Engineering Trainer for NI-ELVIS (2009) QNET Interactive learning Guide, Quanser Inc.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICE DivisionNetaji Subhas Institute of TechnologyNew DelhiIndia

Personalised recommendations