MCK-ELM: multiple composite kernel extreme learning machine for hyperspectral images

  • Ugur Ergul
  • Gokhan BilginEmail author
Original Article


Multiple kernel (MK) learning (MKL) methods have a significant impact on improving the classification performance. Besides that, composite kernel (CK) methods have high capability on the analysis of hyperspectral images due to making use of the contextual information. In this work, it is aimed to aggregate both CKs and MKs autonomously without the need of kernel coefficient adjustment manually. Convex combination of predefined kernel functions is implemented by using multiple kernel extreme learning machine. Thus, complex optimization processes of standard MKL are disposed of and the facility of multi-class classification is profited. Different types of kernel functions are placed into MKs in order to realize hybrid kernel scenario. The proposed methodology is performed over Pavia University, Indian Pines, and Salinas hyperspectral scenes that have ground-truth information. Multiple composite kernels are constructed using Gaussian, polynomial, and logarithmic kernel functions with various parameters, and then the obtained results are presented comparatively along with the state-of-the-art standard machine learning, MKL, and CK methods.


Multiple kernel learning Composite kernels Hybrid kernels Extreme learning machines Hyperspectral images 



This research has been supported by Yildiz Technical University, Scientific Research Projects Coordination Department, Project Number: 2016-04-01-DOP03.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63CrossRefGoogle Scholar
  2. 2.
    Bolton J, Gader P (2011) Application of multiple-instance learning for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 8(5):889–893CrossRefGoogle Scholar
  3. 3.
    Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(1):45–54CrossRefGoogle Scholar
  4. 4.
    Camps-Valls G, Gómez-Chova L, Calpe-Maravilla J, Martín-Guerrero JD, Soria-Olivas E, Alonso-Chordá L, Moreno J (2004) Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans Geosci Remote Sens 42(7):1530–1542CrossRefGoogle Scholar
  5. 5.
    Han M, Liu B (2015) Ensemble of extreme learning machine for remote sensing image classification. Neurocomputing 149:65–70CrossRefGoogle Scholar
  6. 6.
    Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259CrossRefGoogle Scholar
  7. 7.
    Pal M, Maxwell AE, Warner TA (2013) Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens Lett 4(9):853–862CrossRefGoogle Scholar
  8. 8.
    Chen C, Li W, Su H, Liu K (2014) Spectral–spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens 6(6):5795–5814CrossRefGoogle Scholar
  9. 9.
    Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362CrossRefGoogle Scholar
  10. 10.
    Pao YH, Takefuji Y (1992) Functional-link net computing: theory, system architecture, and functionalities. Computer 25(5):76–79CrossRefGoogle Scholar
  11. 11.
    Igelnik B, Pao YH (1995) Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans Neural Netw 6(6):1320–1329CrossRefGoogle Scholar
  12. 12.
    Li M, Wang D (2017) Insights into randomized algorithms for neural networks: practical issues and common pitfalls. Inf Sci 382:170–178CrossRefGoogle Scholar
  13. 13.
    Wang D, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans Cybern 47(10):3466–3479CrossRefGoogle Scholar
  14. 14.
    Schmidt WF, Kraaijveld MA, Duin RP (1992) Feedforward neural networks with random weights. In: Proceedings of 11th IAPR international conference on pattern recognition, vol. II. Conference B: pattern recognition methodology and systems. IEEE, pp 1–4Google Scholar
  15. 15.
    Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501CrossRefGoogle Scholar
  16. 16.
    Gönen M, Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12(Jul):2211–2268MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bach FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the 21st international conference on machine learning, ICML’04. ACM, p 6Google Scholar
  18. 18.
    Gu Y, Chanussot J, Jia X, Benediktsson JA (2017) Multiple kernel learning for hyperspectral image classification: a review. IEEE Trans Geosci Remote Sens 55(11):6547–6565CrossRefGoogle Scholar
  19. 19.
    Wang Q, Gu Y, Tuia D (2016) Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(7):3912–3927CrossRefGoogle Scholar
  20. 20.
    Liu X, Wang L, Huang GB, Zhang J, Yin J (2015) Multiple kernel extreme learning machine. Neurocomputing 149:253–264CrossRefGoogle Scholar
  21. 21.
    Li X, Mao W, Jiang W (2016) Multiple-kernel-learning-based extreme learning machine for classification design. Neural Comput Appl 27(1):175–184CrossRefGoogle Scholar
  22. 22.
    Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Peng J, Chen CP (2015) Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2351–2360CrossRefGoogle Scholar
  24. 24.
    Ergul U, Bilgin G (2017) Hyperspectral image classification with hybrid kernel extreme learning machine. In: IEEE 25th signal processing and communications applications conference, SIU’17. IEEE, pp 1–4Google Scholar
  25. 25.
    Serre D (2000) Matrices: theory and applications, 2002. In: Graduate texts in mathematicsGoogle Scholar
  26. 26.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  27. 27.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  28. 28.
    Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybern) 42(2):513–529CrossRefGoogle Scholar
  29. 29.
    Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) Simplemkl. J Mach Learn Res 9(Nov):2491–2521MathSciNetzbMATHGoogle Scholar
  30. 30.
    Xu X, Tsang IW, Xu D (2013) Soft margin multiple kernel learning. IEEE Trans Neural Netw Learn Syst 24(5):749–761CrossRefGoogle Scholar
  31. 31.
    Kloft M, Brefeld U, Sonnenburg S, Zien A (2011) Lp-norm multiple kernel learning. J Mach Learn Res 12(Mar):953–997MathSciNetzbMATHGoogle Scholar
  32. 32.
    Xia H, Hoi SC (2013) Mkboost: a framework of multiple kernel boosting. IEEE Trans Knowl Data Eng 25(7):1574–1586CrossRefGoogle Scholar
  33. 33.
    Boughorbel S, Tarel JP, Boujemaa N (2005) Conditionally positive definite kernels for svm based image recognition. In: IEEE international conference on multimedia and expo, ICME’05. IEEE, pp 113–116Google Scholar
  34. 34.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46CrossRefGoogle Scholar
  35. 35.
    Viera AJ, Garrett JM et al (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363Google Scholar
  36. 36.
    Foody GM (2004) Thematic map comparison. Photogramm Eng Remote Sens 70(5):627–633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringYildiz Technical University (YTU)IstanbulTurkey
  2. 2.Signal and Image Processing Laboratory (SIMPLAB)YTUIstanbulTurkey

Personalised recommendations