Advertisement

Embedding of fuzzy graphs on topological surfaces

  • Shriram Kalathian
  • Sujatha Ramalingam
  • Narasimman Srinivasan
  • Sundareswaran Raman
  • Said Broumi
Original Article
  • 33 Downloads

Abstract

Planar graph is a special type in crisp as well as in fuzzy graphs. In fuzzy planar graphs, the planarity value is the amount of planarity of the crossed fuzzy edges, so that the intersection of fuzzy edges are possible in fuzzy graphs as compared to the planar graphs in crisp. Generally, the fuzzy planar graphs are depicted in the plane surface. In this paper, the embedding of fuzzy graphs are discussed in the surfaces like sphere and m-torus. Moreover, definition of fuzzy planar triangulation, straight-line, and piecewise embedding are also stated for planar embedding. Some of the effective definitions and theorems are illustrated with examples. Theorems like Euler’s formula for plane and sphere surfaces are proved and formulated for fuzzy planar graphs.

Keywords

Fuzzy graphs Planar embedding Sphere embedding m-Torus embedding Total fuzzy face value Fuzzy planar triangulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abdul-jabbar N, Naoom JH, Ouda EH (2009) Fuzzy dual graph. J Al Nahrain Univ 12(4):168–171Google Scholar
  2. 2.
    Agnarsson G, Greenlaw R (2008) Graph theory modeling, applications and algorithms. Pearson, NoidazbMATHGoogle Scholar
  3. 3.
    Al-Hawary T (2011) Complete fuzzy graphs. Int J Math Combin 4:26–34zbMATHGoogle Scholar
  4. 4.
    Alsheri N, Akram M (2014) Intuitionistic fuzzy planar graphs. Discrete Dyn Nat Soc 4:1–4MathSciNetCrossRefGoogle Scholar
  5. 5.
    Akram M (2012) Interval-valued fuzzy line graphs. Neural Comput Appl 21:S145–S150CrossRefGoogle Scholar
  6. 6.
    Akram M, Dudek WA (2012) Regular bipolar fuzzy graphs. Neural Comput Appl 21:S197–S205CrossRefGoogle Scholar
  7. 7.
    Akram M, Sarwar M (2018) Novel applications of m-polar fuzzy competition graphs in decision support system. Neural Comput Appl 30:S3145–S3165CrossRefGoogle Scholar
  8. 8.
    Berthold MR, Huber K-P (1999) Constructing fuzzy graphs from examples. Intell Data Anal 3(1):37–53CrossRefGoogle Scholar
  9. 9.
    Bhattacharya P (1987) Some remarks on fuzzy graphs. Pattern Recognit Lett 6:297–302CrossRefGoogle Scholar
  10. 10.
    Bondy JA, Murthy USR (1976) Graph theory with application. The Macmillan Press Ltd., New York CityCrossRefGoogle Scholar
  11. 11.
    Eslahchi C, Onaghe BN (2005) Vertex strength of fuzzy graphs. Int J Math Math Sci 2006:1–9CrossRefGoogle Scholar
  12. 12.
    Gani AN, Ahamed MB (2003) Order and size in fuzzy graph. Bull Pure Appl Sci 22(1):145–148MathSciNetzbMATHGoogle Scholar
  13. 13.
    Harary F (1969) Graph theory. Addison Wesley Publishing Company, BostonCrossRefGoogle Scholar
  14. 14.
    Mathew S, Sunitha MS (2010) Node connectivity and arc connectivity of a fuzzy graph. Inf Sci 180(4):519–531MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mathew S, Sunitha MS (2013) Cycle connectivity in fuzzy graphs. J Intell Fuzzy Syst 24(3):549–554MathSciNetzbMATHGoogle Scholar
  16. 16.
    Moderson JN, Nair PS (2000) Fuzzy graphs and hypergraphs. Physica-Verlag, New YorkGoogle Scholar
  17. 17.
    Moderson JN, Peng CS (1994) Operation on fuzzy graphs. Inf Sci 79(3):159–170MathSciNetGoogle Scholar
  18. 18.
    Nirmala G, Dhanabal K (2012) Special planar fuzzy graph configurations. Int J Sci Res Publ 2(7):1–4Google Scholar
  19. 19.
    Pal A, Samanta S, Pal M (2013) Concept of fuzzy planar graphs. In: Proceedings of science and information conference, pp 557–563Google Scholar
  20. 20.
    Pal M, Rashmanlou H (2013) Irregular interval-valued fuzzy graphs. Ann Pure Appl Math 3(1):56–66Google Scholar
  21. 21.
    Pramanik T, Samanta S, Pal M (2016) Interval-valued fuzzy planar graphs. Int J Mach Learn Cybern 7(4):653–664CrossRefGoogle Scholar
  22. 22.
    Rashmanlou H, Borzooei RA (2016) New concepts of interval-valued intuitionistic \(S,T\)-fuzzy graph. J Intell Fuzzy Syst 30(4):1893–1901CrossRefGoogle Scholar
  23. 23.
    Rashmanlou H, Jun YB (2013) Complete interval-valued fuzzy graphs. Ann Fuzzy Math Inf 6(3):677–687MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rosenfeld A (1975) Fuzzy graphs, fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York, pp 77–95CrossRefGoogle Scholar
  25. 25.
    Samanta S, Pal A, Pal M (2014) New concepts of fuzzy planar graphs. Int J Adv Res Artif Intell 3(1):52–59Google Scholar
  26. 26.
    Samanta S, Pal M (2011) Fuzzy threshold graphs. CiiT Int J Fuzzy Syst 3(12):360–364Google Scholar
  27. 27.
    Samanta S, Pal M (2013) Fuzzy k-competition graphs and p-competition fuzzy graphs. Fuzzy Inf Eng 5(2):191–204MathSciNetCrossRefGoogle Scholar
  28. 28.
    Samanta S, Pal M (2015) Fuzzy planar graphs. IEEE Trans Fuzzy Syst 23(6):1936–1942CrossRefGoogle Scholar
  29. 29.
    Shriram K, Sujatha R, Narasimman S (2016) Fuzzy combinatorial dual graphs. Int J Pure Appl Math 109(7):35–41Google Scholar
  30. 30.
    Sunitha MS, Vijayakumar A (2002) Complement of fuzzy graphs. Indian J Pure Appl Math 33:1451–1464MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tahmasbpour A, Borzooei RA, Rashmanlou H (2016) f-Morphism on bipolar fuzzy graphs. J Intell Fuzzy Syst 30(2):651–658CrossRefGoogle Scholar
  32. 32.
    Zadeh LA, Klaua D (1965) Fuzzy sets. Inf Comput 8:338–353zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Shriram Kalathian
    • 1
  • Sujatha Ramalingam
    • 1
  • Narasimman Srinivasan
    • 1
  • Sundareswaran Raman
    • 1
  • Said Broumi
    • 2
  1. 1.Department of MathematicsSSN College of EngineeringChennaiIndia
  2. 2.Laboratory of Information Processing, Faculty of Science Ben MSikUniversity Hassan IICasablancaMorocco

Personalised recommendations