Advertisement

Heuristic orientation adjustment for better exploration in multi-objective optimization

  • Anqi Pan
  • Lei WangEmail author
  • Weian Guo
  • Hongliang Ren
  • Qidi Wu
Original Article
  • 29 Downloads

Abstract

Decomposition strategy which employs predefined subproblem framework and reference vectors has significant contribution in multi-objective optimization, and it can enhance local convergence as well as global diversity. However, the fixed exploring directions sacrifice flexibility and adaptability; therefore, extra reference adaptations should be considered under different shapes of the Pareto front. In this paper, a population-based heuristic orientation generating approach is presented to build a dynamic decomposition. The novel approach replaces the exhaustive reference distribution with reduced and partial orientations clustered within potential areas and provides flexible and scalable instructions for better exploration. Numerical experiment results demonstrate that the proposed method is compatible with both regular Pareto fronts and irregular cases and maintains outperformance or competitive performance compared to some state-of-the-art multi-objective approaches and adaptive-based algorithms. Moreover, the novel strategy presents more independence on subproblem aggregations and provides an autonomous evolving branch in decomposition-based researches.

Keywords

Decomposition Multi-objective Adaptive reference vector Evolutionary algorithm 

Notes

Acknowledgements

This work is supported by the China Scholarship Council, 201706260064, National Natural Science Foundation of China under Grant Nos. 61503287 & 71771176, NUSRI China Jiangsu Provincial Grant BK20150386 & BE2016077, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18F030010. The authors would like to thank Abigail Martin for the proofreading.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195CrossRefGoogle Scholar
  2. 2.
    Asafuddoula M, Ray T, Sarker R (2015) A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput 19(3):445–460.  https://doi.org/10.1109/tevc.2014.2339823 CrossRefGoogle Scholar
  3. 3.
    Cai X, Li Y, Fan Z, Zhang Q (2015) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19(4):508–523.  https://doi.org/10.1109/tevc.2014.2350995 CrossRefGoogle Scholar
  4. 4.
    Cai X, Yang Z, Fan Z, Zhang Q (2016) Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans Cybern PP(99):1–14Google Scholar
  5. 5.
    Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791CrossRefGoogle Scholar
  6. 6.
    Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657.  https://doi.org/10.1137/s1052623496307510 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601.  https://doi.org/10.1109/tevc.2013.2281535 CrossRefGoogle Scholar
  8. 8.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197.  https://doi.org/10.1109/4235.996017 Pii S 1089-778x(02)04101-2CrossRefGoogle Scholar
  9. 9.
    Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Cec’02: proceedings of the 2002 congress on evolutionary computation, vol 1–2, pp 825–830Google Scholar
  10. 10.
    Ding J, Liu J, Chowdhury KR, Zhang W, Hu Q, Lei J (2014) A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization. Neurocomputing 137:261–267CrossRefGoogle Scholar
  11. 11.
    Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many objective particle swarm optimization. Inf Sci 374:115–134.  https://doi.org/10.1016/j.ins.2016.09.026 CrossRefGoogle Scholar
  12. 12.
    Gee SB, Tan KC, Shim VA, Pal NR (2015) Online diversity assessment in evolutionary multiobjective optimization: a geometrical perspective. IEEE Trans Evol Comput 19(4):542–559.  https://doi.org/10.1109/tevc.2014.2353672 CrossRefGoogle Scholar
  13. 13.
    Giagkiozis I, Purshouse RC, Fleming PJ (2014) Generalized decomposition and cross entropy methods for many-objective optimization. Inf Sci 282:363–387MathSciNetCrossRefGoogle Scholar
  14. 14.
    He Z, Yen GG (2016) Many-objective evolutionary algorithm: objective space reduction and diversity improvement. IEEE Trans Evol Comput 20(1):145–160.  https://doi.org/10.1109/tevc.2015.2433266 CrossRefGoogle Scholar
  15. 15.
    Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506CrossRefGoogle Scholar
  16. 16.
    Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2010) Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of the 12th annual conference on genetic and evolutionary computation, ACM, pp 519–526Google Scholar
  17. 17.
    Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622CrossRefGoogle Scholar
  18. 18.
    Jiang Q, Wang L, Hei X, Yu G, Lin Y, Lu X (2016) Moea/d-ara+ sbx: a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover. Knowl Based Syst 107:197–218CrossRefGoogle Scholar
  19. 19.
    Jost L (2006) Entropy and diversity. Oikos 113(2):363–375CrossRefGoogle Scholar
  20. 20.
    Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716.  https://doi.org/10.1109/tevc.2014.2373386 CrossRefGoogle Scholar
  21. 21.
    Li K, Kwong S, Zhang Q, Deb K (2015) Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans Cybern 45(10):2076–2088CrossRefGoogle Scholar
  22. 22.
    Liu B, Fernandez FV, Zhang Q, Pak M, Sipahi S, Gielen G (2010) An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. In: 2010 IEEE congress on evolutionary computation (CEC), IEEE, pp 1–7Google Scholar
  23. 23.
    Mei Y, Tang K, Yao X (2011) Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans Evol Comput 15(2):151–165.  https://doi.org/10.1109/tevc.2010.2051446 CrossRefGoogle Scholar
  24. 24.
    Ming M, Wang R, Zha Y, Zhang T (2017) Pareto adaptive penalty-based boundary intersection method for multi-objective optimization. Inf Sci 414:158–174.  https://doi.org/10.1016/j.ins.2017.05.012 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pan A, Wang L, Guo W, Wu Q (2018) A diversity enhanced multiobjective particle swarm optimization. Inf Sci 436–437:441–465MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pilat M, Neruda R (2015) Incorporating user preferences in moead through the coevolution of weights. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation, ACM, pp 727–734Google Scholar
  27. 27.
    Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) Moea/d with adaptive weight adjustment. Evol Comput 22(2):231–264CrossRefGoogle Scholar
  28. 28.
    Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308MathSciNetGoogle Scholar
  29. 29.
    Rubio-Largo A, Zhang Q, Vega-Rodriguez MA (2014) A multiobjective evolutionary algorithm based on decomposition with normal boundary intersection for traffic grooming in optical networks. Inf Sci 289:91–116.  https://doi.org/10.1016/j.ins.2014.08.004 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sato H (2014) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, ACM, pp 645–652Google Scholar
  31. 31.
    Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22:609–622CrossRefGoogle Scholar
  32. 32.
    Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: a matlab platform for evolutionary multi-objective optimization. Neural Evol Comput 12(4):73–87Google Scholar
  33. 33.
    Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462.  https://doi.org/10.1109/tevc.2016.2608507 CrossRefGoogle Scholar
  34. 34.
    Wang H, Jin Y, Yao X (2016) Diversity assessment in many-objective optimization. IEEE Trans Cybern PP(99):1–13Google Scholar
  35. 35.
    Wang L, Zhang Q, Zhou A, Gong M, Jiao L (2016) Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(3):475–480.  https://doi.org/10.1109/tevc.2015.2457616 CrossRefGoogle Scholar
  36. 36.
    Wang R, Xiong J, Ishibuchi H, Wu G, Zhang T (2017) On the effect of reference point in MOEA/D for multi-objective optimization. Appl Soft Comput 58(Supplement C):25–34.  https://doi.org/10.1016/j.asoc.2017.04.002 CrossRefGoogle Scholar
  37. 37.
    Wang Z, Zhang Q, Li H (2015) Balancing convergence and diversity by using two different reproduction operators in MOEA/D: some preliminary work. In: 2015 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 2849–2854Google Scholar
  38. 38.
    Wu M, Li K, Kwong S, Zhou Y (2017) Adaptive two-level matching-based selection for decomposition multi-objective optimization. IEEE Trans Evol Comput PP(99):1–1.  https://doi.org/10.1109/TEVC.2017.2656922 CrossRefGoogle Scholar
  39. 39.
    Yang S, Jiang S, Jiang Y (2017) Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Comput 21(16):4677–4691CrossRefGoogle Scholar
  40. 40.
    Yu G, Zheng J, Shen R, Li M (2016) Decomposing the user-preference in multiobjective optimization. Soft Comput 20(10):4005–4021.  https://doi.org/10.1007/s00500-015-1736-z CrossRefGoogle Scholar
  41. 41.
    Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198.  https://doi.org/10.1109/tevc.2015.2443001 CrossRefGoogle Scholar
  42. 42.
    Zhang H, Llorca J, Davis CC, Milner SD (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222CrossRefGoogle Scholar
  43. 43.
    Zhang H, Song S, Zhou A, Gao XZ (2014) A clustering based multiobjective evolutionary algorithm. In: 2014 IEEE congress on evolutionary computation, pp 723–730Google Scholar
  44. 44.
    Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731.  https://doi.org/10.1109/tevc.2007.892759 CrossRefGoogle Scholar
  45. 45.
    Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, pp 1–30Google Scholar
  46. 46.
    Zhou A, Zhang Q (2016) Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 20(1):52–64.  https://doi.org/10.1109/tevc.2015.2424251 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Anqi Pan
    • 1
    • 2
  • Lei Wang
    • 1
    Email author
  • Weian Guo
    • 3
  • Hongliang Ren
    • 2
  • Qidi Wu
    • 1
  1. 1.School of Electronics and Information EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Sino-Germany College of Applied SciencesTongji UniversityShanghaiChina

Personalised recommendations