Advertisement

A neuroplasticity-inspired neural circuit for acoustic navigation with obstacle avoidance that learns smooth motion paths

  • Danish ShaikhEmail author
  • Poramate Manoonpong
EANN 2017
  • 50 Downloads

Abstract

Acoustic spatial navigation for mobile robots is relevant in the absence of reliable visual information about the target that must be localised. Reactive robot navigation in such goal-directed phonotaxis tasks requires generating smooth motion paths towards the acoustic target while simultaneously avoiding obstacles. We have reported earlier on a neural circuit for acoustic navigation which learned stable robot motion paths for a simulated mobile robot. However, in complex environments, the learned motion paths were not smooth. Here, we extend our earlier architecture, by adding a path-smoothing behaviour, to generate smooth motion paths for a simulated mobile robot. This allows the robot to learn to smoothly navigate towards a virtual sound source while avoiding randomly placed obstacles in the environment. We demonstrate through five independent learning trials in simulation that the proposed extension learns motion paths that are not only smooth but also relatively shorter as compared to those generated without learning as well as by our earlier architecture.

Keywords

Smooth path-planning Reactive navigation Behaviour-based robotics Phonotaxis Lizard peripheral auditory system Neuroplasticity Correlation-based learning 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

521_2018_3845_MOESM1_ESM.eps (3.2 mb)
Supplementary material 1 (eps 3284 KB)
521_2018_3845_MOESM2_ESM.eps (2.6 mb)
Supplementary material 2 (eps 2625 KB)
521_2018_3845_MOESM3_ESM.eps (4.8 mb)
Supplementary material 3 (eps 4916 KB)
521_2018_3845_MOESM4_ESM.eps (3 mb)
Supplementary material 4 (eps 3029 KB)
521_2018_3845_MOESM5_ESM.wmv (9.1 mb)
Supplementary material 5 (wmv 9333 KB)
521_2018_3845_MOESM6_ESM.wmv (11.2 mb)
Supplementary material 6 (wmv 11497 KB)
521_2018_3845_MOESM7_ESM.wmv (12.1 mb)
Supplementary material 7 (wmv 12364 KB)
521_2018_3845_MOESM8_ESM.wmv (18 mb)
Supplementary material 8 (wmv 18404 KB)
521_2018_3845_MOESM9_ESM.wmv (14.4 mb)
Supplementary material 9 (wmv 14794 KB)
521_2018_3845_MOESM10_ESM.eps (7.7 mb)
Supplementary material 10 (eps 7929 KB)
521_2018_3845_MOESM11_ESM.eps (7.8 mb)
Supplementary material 11 (eps 7951 KB)

References

  1. 1.
    Alves S, Rosario J, Ferasoli Filho H, Rincon L, Yamasaki R (2011) Conceptual bases of robot navigation modeling, control and applications. In: Barrera A (ed) Advances in robot navigation. InTech, London.  https://doi.org/10.5772/20955 CrossRefGoogle Scholar
  2. 2.
    Andersson S, Shah V, Handzel A, Krishnaprasad P (2004) Robot phonotaxis with dynamic sound source localization. In: Proceedings of IEEE international conference on robotics and automation, 2004. ICRA ’04, vol 5, pp 4833–4838.  https://doi.org/10.1109/ROBOT.2004.1302483
  3. 3.
    Arkin R (1998) Behavior-based robotics. MIT Press, CambridgeGoogle Scholar
  4. 4.
    Bicho E, Mallet P, Schöner G (2000) Target representation on an autonomous vehicle with low-level sensors. Int J Robot Res 19(5):424–447.  https://doi.org/10.1177/02783640022066950 CrossRefGoogle Scholar
  5. 5.
    Braitenberg V (1984) Vehicles: experiments in synthetic psychology. MIT Press, CambridgeGoogle Scholar
  6. 6.
    Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14–23.  https://doi.org/10.1109/JRA.1986.1087032 CrossRefGoogle Scholar
  7. 7.
    Choi JW, Curry R, Elkaim G (2008) Path planning based on Bézier curve for autonomous ground vehicles. In: Advances in electrical and electronics engineering—IAENG special edition of the world congress on engineering and computer science 2008, pp 158–166 .  https://doi.org/10.1109/WCECS.2008.27
  8. 8.
    Christensen-Dalsgaard J, Manley G (2005) Directionality of the lizard ear. J Exp Biol 208(6):1209–1217CrossRefGoogle Scholar
  9. 9.
    Dasgupta S, Wörgötter F, Manoonpong P (2014) Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits 8:126.  https://doi.org/10.3389/fncir.2014.00126 CrossRefGoogle Scholar
  10. 10.
    Dudek G, Jenkin M (2010) Computational principles of mobile robotics, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  11. 11.
    Farin G (2001) Curves and surfaces for CAGD: a practical guide. The Morgan Kaufmann series in computer graphics. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Fletcher N, Thwaites S (1979) Physical models for the analysis of acoustical systems in biology. Q Rev Biophys 12(1):25–65CrossRefGoogle Scholar
  13. 13.
    Fraichard T, Scheuer A (2004) From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans Robot 20(6):1025–1035.  https://doi.org/10.1109/TRO.2004.833789 CrossRefGoogle Scholar
  14. 14.
    Franz M, Mallot H (2000) Biomimetic robot navigation. Robot Auton Syst 30(1):133–153.  https://doi.org/10.1016/S0921-8890(99)00069-X CrossRefGoogle Scholar
  15. 15.
    Hebb D (2005) The organization of behavior: a neuropsychological theory. Psychology Press, LondonGoogle Scholar
  16. 16.
    Huang J, Supaongprapa T, Terakura I, Wang F, Ohnishi N, Sugie N (1999) A model-based sound localization system and its application to robot navigation. Robot Auton Syst 27(4):199–209.  https://doi.org/10.1016/S0921-8890(99)00002-0 CrossRefGoogle Scholar
  17. 17.
    Hwang BY, Park SH, Han JH, Kim MG, Lee JM (2014) Sound-source tracking and obstacle avoidance system for the mobile robot. Springer, Cham, pp 181–192.  https://doi.org/10.1007/978-3-319-05711-8_19 CrossRefGoogle Scholar
  18. 18.
    Kanayama Y, Hartman B (1997) Smooth local-path planning for autonomous vehicles. Int J Robot Res 16(3):263–284.  https://doi.org/10.1177/027836499701600301 CrossRefGoogle Scholar
  19. 19.
    Klopf A (1988) A neuronal model of classical conditioning. Psychobiology 16(2):85–125Google Scholar
  20. 20.
    Komoriya K, Tanie K (1989) Trajectory design and control of a wheel-type mobile robot using B-spline curve. In: Proceedings of IEEE/RSJ international workshop on intelligent robots and systems ’89. The autonomous mobile robots and its applications. IROS ’89, pp 398–405.  https://doi.org/10.1109/IROS.1989.637937
  21. 21.
    Kosko B (1986) Differential Hebbian learning. AIP Conf Proc 151(1):277–282CrossRefGoogle Scholar
  22. 22.
    Lamiraux F, Lammond JP (2001) Smooth motion planning for car-like vehicles. IEEE Trans Robot Autom 17(4):498–501.  https://doi.org/10.1109/70.954762 CrossRefGoogle Scholar
  23. 23.
    LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511546877 CrossRefzbMATHGoogle Scholar
  24. 24.
    Magid E, Keren D, Rivlin E, Yavneh I (2006) Spline-based robot navigation. In: 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 2296–2301.  https://doi.org/10.1109/IROS.2006.282635
  25. 25.
    Manoonpong P, Kolodziejski C, Wörgötter F, Morimoto J (2013) Combining correlation-based and reward-based learning in neural control for policy improvement. Adv Complex Syst 16(02n03):1350,015.  https://doi.org/10.1142/S021952591350015X MathSciNetCrossRefGoogle Scholar
  26. 26.
    Manoonpong P, Wörgötter F (2009) Neural information processing. In: Proceedings of the 16th international conference, ICONIP 2009, part II, chap. adaptive sensor-driven neural control for learning in walking machines, Bangkok, Thailand, 1–5 December 2009. Springer, Berlin, pp 47–55CrossRefGoogle Scholar
  27. 27.
    Nakhaeinia D, Tang S, Noor S, Motlagh O (2011) A review of control architectures for autonomous navigation of mobile robots. Int J Phys Sci 6(2):169–174Google Scholar
  28. 28.
    Ön S, Yazici A (2011) A comparative study of smooth path planning for a mobile robot considering kinematic constraints. In: 2011 international symposium on innovations in intelligent systems and applications, pp 565–569.  https://doi.org/10.1109/INISTA.2011.5946138
  29. 29.
    Porr B, Wörgötter F (2006) Strongly improved stability and faster convergence of temporal sequence learning by utilising input correlations only. Neural Comput 18(6):1380–1412CrossRefGoogle Scholar
  30. 30.
    Porr B, Wörgötter F (2007) Fast heterosynaptic learning in a robot food retrieval task inspired by the limbic system. Biosystems 89(1–3):294–299 (Selected Papers presented at the 6th International Workshop on Neural Coding)CrossRefGoogle Scholar
  31. 31.
    Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia A, White L (2012) Synaptic plasticity. Neuroscience, 5th edn. Sinauer Associates, Sunderland, pp 163–182Google Scholar
  32. 32.
    Ravankar A, Ravankar A, Kobayashi Y, Emaru T (2016) Path smoothing extension for various robot path planners. In: 2016 16th international conference on control, automation and systems (ICCAS), pp 263–268.  https://doi.org/10.1109/ICCAS.2016.7832330
  33. 33.
    Shaikh D, Hallam J, Christensen-Dalsgaard J (2010) Modifying directionality through auditory system scaling in a robotic lizard. Springer, Berlin, pp 82–92.  https://doi.org/10.1007/978-3-642-15193-4_8 CrossRefGoogle Scholar
  34. 34.
    Shaikh D, Hallam J, Christensen-Dalsgaard J (2016) From ear to there: a review of biorobotic models of auditory processing in lizards. Biol Cybern 110(4):303–317.  https://doi.org/10.1007/s00422-016-0701-y CrossRefzbMATHGoogle Scholar
  35. 35.
    Shaikh D, Manoonpong P (2017) A neural circuit for acoustic navigation combining heterosynaptic and non-synaptic plasticity that learns stable trajectories. Springer, Cham, pp 544–555.  https://doi.org/10.1007/978-3-319-65172-9_46 CrossRefGoogle Scholar
  36. 36.
    Takahashi A, Hongo T, Ninomiya Y, Sugimoto G (1989) Local path planning and motion control for AGV in positioning. In: Proceedings of IEEE/RSJ international workshop on intelligent robots and systems ’89. IROS ’89. The autonomous mobile robots and its applications, pp 392–397.  https://doi.org/10.1109/IROS.1989.637936
  37. 37.
    Wever E (1978) The reptile ear: its structure and function. Princeton University Press, PrincetonGoogle Scholar
  38. 38.
    Zeno P, Patel S, Sobh T (2016) Review of neurobiologically based mobile robot navigation system research performed since 2000. J Robot.  https://doi.org/10.1155/2016/8637251 CrossRefGoogle Scholar
  39. 39.
    Zhang W, Linden D (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4(11):885–900.  https://doi.org/10.1038/nrn1248 CrossRefGoogle Scholar
  40. 40.
    Zu L, Yang P, Zhang Y, Chen L, Sun H (2009) Study on navigation system of mobile robot based on auditory localization. In: 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 321–326.  https://doi.org/10.1109/ROBIO.2009.5420665
  41. 41.
    Zuojun L, Guangyao L, Peng Y, Feng L, Chu C (2012) Behavior based rescue robot audio navigation and obstacle avoidance. In: Proceedings of the 31st Chinese control conference, pp 4847–4851Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Embodied AI and Neurorobotics Laboratory, Centre for BioRobotics, Maersk Mc-Kinney Moeller InstituteUniversity of Southern DenmarkOdense MDenmark
  2. 2.Bio-inspired Robotics and Neural Engineering Laboratory, School of Information Science and TechnologyVidyasirimedhi Institute of Science and TechnologyRayongThailand

Personalised recommendations