Advertisement

Modeling a robust wind-speed forecasting to apply to wind-energy production

  • José Gustavo Hernández-Travieso
  • Carlos M. Travieso-González
  • Jesús B. Alonso-Hernández
  • José Miguel Canino-Rodríguez
  • Antonio G. Ravelo-García
Original Article
  • 62 Downloads

Abstract

To obtain green energy, it is important to know, in advance, an estimation of the weather conditions. In case of wind energy, another important factor is to determine the right moment to stop the turbine in case of strong winds to avoid its damage. This research introduces a tool, not only to increase green energy generation from wind, reducing CO2 emissions, but also to prevent failures in turbines that is especially interesting for manufacturers. Using Artificial Neural Networks and data from meteorological stations located in Gran Canaria airport and Tenerife Sur airport (both in Canary Islands, Spain), a robust prediction system able to determine wind speed with a mean absolute error of 0.29 m per second is presented.

Keywords

Modeling Wind-speed prediction Green energy Artificial neural networks 

Notes

Acknowledgements

This work has been supported by Endesa Foundation and the University of Las Palmas Foundation under Grant “Programa Innova Canarias 2020”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

  1. 1.
    World Bank (2018) Percentage of fossil fuel energy consumed by countries. http://datos.bancomundial.org/indicador/EG.USE.COMM.FO.ZS Accessed 24 Mar 2018
  2. 2.
    Cinco D (2018) Spanish economic journal founded in 1978. In: News on the European pact of energy. http://cincodias.com/cincodias/2014/10/16/empresas/1413464789_240406.html. Accessed 24 Mar 2018
  3. 3.
    European Commission (2018) Environment action programme to 2020. http://ec.europa.eu/environment/newprg/index.htm. Accessed 24 Mar 2018
  4. 4.
    United Nations (2017) Climate summit 2015. http://www.cop21.gouv.fr/en/. Accessed 19 Apr 2017
  5. 5.
    United Nations. Climate Summit 2015. http://www.un.org/sustainabledevelopment/cop21/ Accessed 24 March 2018
  6. 6.
    Gorona del Viento (2018) Wind-hydro-pumped station of El Hierro. http://www.goronadelviento.es/index.php. Accessed 24 Mar 2018
  7. 7.
    Xingpei L, Yibing L, Weidong X (2009) Wind speed prediction based on genetic neural network. In: 4th IEEE conference on industrial electronics and applications (ICIEA 2009), international conference center, Xi´an, P. R. China, 25–27 May 2009, pp 2448–2451.  https://doi.org/10.1109/iciea.2009.5138642
  8. 8.
    Zhao P, Xia J, Dai Y, He J (2010) Wind speed prediction using support vector regression. In: 5th IEEE conference on industrial electronics and applications (ICIEA 2010), Taichung, Taiwan, 15–17 June 2010, pp 882–886.  https://doi.org/10.1109/pes.2010.5589418
  9. 9.
    Tarade RS, Katti PK (2011) A comparative analysis for wind speed prediction. In: International conference on energy, automation, and signal (ICEAS). Siksha ‘O’ Anusandhan University Bhubaneswar, India, 28–30 December 2011, pp 1–6.  https://doi.org/10.1109/iceas.2011.6147167
  10. 10.
    Bhaskar K, Singh SN (2012) AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3(2):306–315.  https://doi.org/10.1109/TSTE.2011.2182215 CrossRefGoogle Scholar
  11. 11.
    Nan S, Su-quan Z, Xian-hui Z, Xun-wen S, Xiao-yan Z (2013) Wind speed forecasting based on grey predictor and genetic neural network models. In: International conference on measurement, information and control (ICMIC), vol 02. Harbin University of Science and Technology Building One No. 52 Xuefu Road Nangang District, Harbin, China, 16–18 August 2013, pp 1479–1482.  https://doi.org/10.1109/mic.2013.6758238
  12. 12.
    Chen N, Qian Z, Nabney IT, Meng X (2014) Wind power forecasts using gaussian processes and numerical weather prediction. IEEE Trans Power Syst 29(2):656–665.  https://doi.org/10.1109/TPWRS.2013.2282366 CrossRefGoogle Scholar
  13. 13.
    Yoshida S, Suzuki H, Kitajima T, Kassim AM, Yasuno T (2016) Correction method of wind speed prediction system using predicted wind speed fluctuation. In: 55th annual conference of the society of instrument and control engineers of Japan (SICE), Tsukuba International Congress Center, Tsukuba, Japan, 20–23 September 2016, pp 1054–1059.  https://doi.org/10.1109/sice.2016.7749245
  14. 14.
    Mert İ, Karakuş C, Üneş F (2016) Estimating the energy production of the wind turbine using artificial neural network. Neural Comput Appl 27:1231.  https://doi.org/10.1007/s00521-015-1921-0 CrossRefGoogle Scholar
  15. 15.
    Li J, Wang R, Zhang T (2016) Wind speed prediction using a cooperative coevolution genetic algorithm based on back propagation neural network. In: IEEE world congress on evolutionary computation (CEC), Vancouver, BC, 24–29 July 2016, pp 4578–4583.  https://doi.org/10.1109/cec.2016.7744373
  16. 16.
    Filik UB, Filik T (2017) Wind speed prediction using artificial neural networks based on multiple local measurements in Eskisehir. Energy Proc 107:264–269.  https://doi.org/10.1016/j.egypro.2016.12.147 CrossRefGoogle Scholar
  17. 17.
    Ulkat D, Günay ME (2017) Prediction of mean monthly wind speed and optimization of wind power by artificial neural networks using geographical and atmospheric variables: case of Aegean Region of Turkey. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-2895-x Google Scholar
  18. 18.
    Gamesa (2018) Case of study: Arinaga. In: A project come true. http://pdf.archiexpo.com/pdf/gamesa-electric/case-study-arinaga/88576-242524.html. Accessed 24 Mar 2018
  19. 19.
  20. 20.
    Office of Energy Efficiency and Renewable Energy (2018) U.S. Department of Energy. How do wind turbines survive severe storms? https://www.energy.gov/eere/articles/how-do-wind-turbines-survive-severe-storms. Accessed 24 Mar 2018
  21. 21.
    Professional Windsurfers Association (PWA) (2017) Events of the PWA world tour calendar 2017 http://www.pwaworldtour.com/index.php?id=2151. Accessed 18 Feb 2017
  22. 22.
    Asociación Empresarial Eólica (2017) The Spanish Wind Energy Association. http://www.aeeolica.org/es/map/canarias/. Accessed 18 Feb 2017
  23. 23.
    Haykin S (1999) Neural networks. In: A comprehensive foundation, 2nd edn. Prentice Hall Inc., United States of AmericaGoogle Scholar
  24. 24.
    Li X, Zecchin AC, Maier HR (2014) Selection of smoothing parameter estimators for general regression neural networks: applications to hydrological and water resources modelling. Environ Model Softw 59:162–186.  https://doi.org/10.1016/j.envsoft.2014.05.010 CrossRefGoogle Scholar
  25. 25.
    Bakker M, Vreeburg JHG, van Schagen KM, Rietveld LC (2013) A fully adaptive forecasting model for short-term drinking water demand. Environ Model Softw 48:141–151.  https://doi.org/10.1016/j.envsoft.2013.06.012 CrossRefGoogle Scholar
  26. 26.
    Valverde MC, Araujo E, Campos Velho H (2014) Neural network and fuzzy logic statistical downscaling of atmospheric circulation-type specific weather pattern for rainfall forecasting. Appl Soft Comput 22:681–694.  https://doi.org/10.1016/j.asoc.2014.02.025 CrossRefGoogle Scholar
  27. 27.
    Hernández-Travieso JG, Herrera-Jiménez AL, Travieso-González CM, Morgado-Dias F, Alonso-Hernández JB, Ravelo-García AG (2017) Temperature control by its forecasting applying score fusion for sustainable development. Sustainability 9:193CrossRefGoogle Scholar
  28. 28.
    Devi CJ, Reddy PBS, Kumar KV, Reddy BM, Nayak RN (2012) ANN approach for weather prediction using Backpropagation. Int J Eng Trends Technol 3:19–23Google Scholar
  29. 29.
    Serrano A, Soria E, Martín J (2009) Redes Neuronales Artificiales. Universidad de Valencia (Escuela Técnica Superior Ingeniería, Departamento de Ingeniería Electrónica), ValenciaGoogle Scholar
  30. 30.
    Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–263Google Scholar
  31. 31.
    Gamesa (2018) G52-850 KW Technical Information. http://www.wind-power-program.com/Library/Turbine%20leaflets/Gamesa/Gamesa%20G52%20850kw.pdf. Accessed 24 Mar 2018

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  1. 1.Signal and Communications Department, Institute for Technological Development and Innovation in Communications (IDeTIC)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Signal and Communications DepartmentUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations