Advertisement

Object tracking in the presence of shaking motions

  • Manna Dai
  • Shuying Cheng
  • Xiangjian He
  • Dadong Wang
Original Article
  • 59 Downloads

Abstract

Visual tracking can be particularly interpreted as a process of searching for targets and optimizing the searching. In this paper, we present a novel tracker framework for tracking shaking targets. We formulate the underlying geometrical relevance between a search scope and a target displacement. A uniform sampling among the search scopes is implemented by sliding windows. To alleviate any possible redundant matching, we propose a double-template structure comprising of initial and previous tracking results. The element-wise similarities between a template and its candidates are calculated by jointly using kernel functions which provide a better outlier rejection property. The STC algorithm is used to improve the tracking results by maximizing a confidence map incorporating temporal and spatial context cues about the tracked targets. For better adaptation to appearance variations, we employ a linear interpolation to update the context prior probability of the STC method. Both qualitative and quantitative evaluations are performed on all sequences that contain shaking motions and are selected from the OTB-50 challenging benchmark. The proposed approach is compared with and outperforms 12 state-of-the-art tracking methods on the selected sequences while running on MATLAB without code optimization. We have also performed further experiments on the whole OTB-50 and VOT 2015 datasets. Although the most of sequences in these two datasets do not contain motion blur that this paper is focusing on, the results of our method are still favorable compared with all of the state-of-the-art approaches.

Keywords

Shaking targets Uniform sampling Kernel Temporal and spatial context 

Notes

Acknowledgements

This work was supported by Fujian Provincial Department of Science and Technology (Grant No. 2015H0021).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: 2006 IEEE computer society conference on computer vision and pattern recognition. IEEE, vol 1, pp 798–805Google Scholar
  2. 2.
    Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632CrossRefGoogle Scholar
  3. 3.
    Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1830–1837Google Scholar
  4. 4.
    Bhattacharyya A (1946) On a measure of divergence between two multinomial populations. Sankhyā Indian J Stat 7:401–406MathSciNetMATHGoogle Scholar
  5. 5.
    Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84CrossRefGoogle Scholar
  6. 6.
    Čehovin L, Leonardis A, Kristan M (2016) Robust visual tracking using template anchors. In: 2016 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1–8Google Scholar
  7. 7.
    Cuevas E, Zaldivar D, Rojas R (2005) Kalman filter for vision trackingGoogle Scholar
  8. 8.
    Dai M, Cheng S, He X (2016) Hybrid generative–discriminative hash tracking with spatio-temporal contextual cues. Neural Comput Appl, pp 1–11Google Scholar
  9. 9.
    Dai M, Lin P, Wu L, Chen Z, Lai S, Zhang J, Cheng S, He X (2015) Orderless and blurred visual tracking via spatio-temporal context. In: MultiMedia modeling. Springer, pp 25–36Google Scholar
  10. 10.
    Danelljan M, Hager G, Khan FS, Felsberg M (2016) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39:1561–1575CrossRefGoogle Scholar
  11. 11.
    Danelljan M, Hager G, Shahbaz Khan F, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 4310–4318Google Scholar
  12. 12.
    Danelljan M, Khan FS, Felsberg M, Weijer Jvd (2014) Adaptive color attributes for real-time visual tracking. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1090–1097Google Scholar
  13. 13.
    Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Computer vision–ECCV 2008. Springer, pp 234–247Google Scholar
  14. 14.
    Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Techn J 29(2):147–160MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109CrossRefGoogle Scholar
  16. 16.
    Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 263–270Google Scholar
  17. 17.
    Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Computer vision–ECCV 2012. Springer, pp 702–715Google Scholar
  18. 18.
    Jepson AD, Fleet DJ, El-Maraghi TF (2003) Robust online appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311CrossRefGoogle Scholar
  19. 19.
    Julier SJ, Uhlmann JK, Durrant-Whyte HF (1996) A new approach for the nonlinear transformation of means and covariances in linear filters. IEEE Trans Autom Control 45:477–482CrossRefMATHGoogle Scholar
  20. 20.
    Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 49–56Google Scholar
  21. 21.
    Koikkalainen J, Lötjönen J, Thurfjell L, Rueckert D, Waldemar G, Soininen H, Initiative ADN et al (2011) Multi-template tensor-based morphometry: application to analysis of Alzheimer’s disease. NeuroImage 56(3):1134–1144CrossRefGoogle Scholar
  22. 22.
    Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir T, Hager G, Nebehay G, Pflugfelder R (2015) The visual object tracking vot2015 challenge results. In: The IEEE international conference on computer vision (ICCV) workshopsGoogle Scholar
  23. 23.
    Kwon J, Lee KM (2010) Visual tracking decomposition. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1269–1276Google Scholar
  24. 24.
    Kwon J, Lee, KM (2011) Tracking by sampling trackers. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 1195–1202Google Scholar
  25. 25.
    Lei JB, Yin JB, Shen HB (2013) Gfo: a data driven approach for optimizing the gaussian function based similarity metric in computational biology. Neurocomputing 99(1):307–315CrossRefGoogle Scholar
  26. 26.
    Li P, Zhang T, Ma B (2004) Unscented kalman filter for visual curve tracking. Image Vis Comput 22(2):157–164CrossRefGoogle Scholar
  27. 27.
    Liu M, Zhang D, Shen D (2016) Relationship induced multi-template learning for diagnosis of alzheimers disease and mild cognitive impairment. IEEE Trans Med Imaging 35(6):1463–1474CrossRefGoogle Scholar
  28. 28.
    Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci (Calcutta) 2:49–55MATHGoogle Scholar
  29. 29.
    Mei X, Ling H (2009) Robust visual tracking using l1 minimization. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 1436–1443Google Scholar
  30. 30.
    Min R, Wu G, Cheng J, Wang Q, Shen D (2014) Multi-atlas based representations for Alzheimer’s disease diagnosis. Hum Brain Map 35(10):5052–5070CrossRefGoogle Scholar
  31. 31.
    Models S (1979) Stochastic models, estimation, and control. Academic Press, LondonGoogle Scholar
  32. 32.
    Oron S, Bar-Hillel A, Levi D, Avidan S (2012) Locally orderless tracking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1940–1947Google Scholar
  33. 33.
    Oyedotun OK, Khashman A (2016) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28:3941–3951CrossRefGoogle Scholar
  34. 34.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  35. 35.
    Song H (2014) Robust visual tracking via online informative feature selection. Electron Lett 50(25):1931–1933CrossRefGoogle Scholar
  36. 36.
    Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision. IEEE, pp 839–846Google Scholar
  37. 37.
    Julier SJ, Uhlmann JK (1997) A new extension of the kalman filter to nonlinear systems, vol 3068, pp 182–193Google Scholar
  38. 38.
    Van De Weijer J, Schmid C, Verbeek J, Larlus D (2009) Learning color names for real-world applications. IEEE Trans Image Process 18(7):1512–1523MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Wang N, Yeung DY (2013) Learning a deep compact image representation for visual tracking. In: Advances in neural information processing systems, pp 809–817Google Scholar
  40. 40.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2411–2418Google Scholar
  41. 41.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2411–2418Google Scholar
  42. 42.
    Yang C, Duraiswami R, Davis L (2005) Efficient mean-shift tracking via a new similarity measure. In: 2005 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05). IEEE, vol 1, pp 176–183Google Scholar
  43. 43.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv (CSUR) 38(4):13CrossRefGoogle Scholar
  44. 44.
    Zhang H, Cao X, Ho JKL, Chow TWS (2016) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13:520–531CrossRefGoogle Scholar
  45. 45.
    Zhang K, Liu Q, Wu Y, Yang MH (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25(4):1779–1792MathSciNetGoogle Scholar
  46. 46.
    Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411CrossRefMATHGoogle Scholar
  47. 47.
    Zhang K, Zhang L, Liu Q, Zhang D, Yang MH (2014) Fast visual tracking via dense spatio-temporal context learning. In: Computer Vision–ECCV. Springer, pp 127–141Google Scholar
  48. 48.
    Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Computer vision–ECCV 2012. Springer, pp 864–877Google Scholar
  49. 49.
    Zhou QH, Lu H, Yang MH (2011) Online multiple support instance tracking. In: 2011 IEEE international conference on automatic face and gesture recognition and workshops (FG 2011). IEEE, pp 545–552Google Scholar
  50. 50.
    Zhou T, He X, Xie K, Fu K, Zhang J, Yang J (2015) Robust visual tracking via efficient manifold ranking with low-dimensional compressive features. Pattern Recogn 48(8):2459–2473CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2018

Authors and Affiliations

  • Manna Dai
    • 1
    • 2
    • 3
  • Shuying Cheng
    • 1
    • 4
  • Xiangjian He
    • 2
  • Dadong Wang
    • 3
  1. 1.Institute of Micro/Nano Devices and Solar Cells, College of Physics and Information EngineeringFuzhou UniversityFuzhouChina
  2. 2.University of Technology SydneySydneyAustralia
  3. 3.Commonwealth Scientific and Industrial Research Organisation (CSIRO)SydneyAustralia
  4. 4.Jiangsu Collaborative Innovation Center of Photovolatic Science and EngineeringChangzhouChina

Personalised recommendations