Advertisement

An LBP encoding scheme jointly using quaternionic representation and angular information

  • Rushi Lan
  • Huimin LuEmail author
  • Yicong Zhou
  • Zhenbing Liu
  • Xiaonan Luo
Cognitive Computing for Intelligent Application and Service
  • 59 Downloads

Abstract

Local descriptors play a crucial role in numerous computer vision and pattern recognition applications. This paper proposes a novel local descriptor, called the quaternionic local angular binary pattern (QLABP), for color image classification. QLABP is based on the quaternionic representation (QR) of color images such that it is able to handle all color components holistically as well as consider their relations. Using QR, the quaternionic angular information is further developed to account for more color characteristics. We provide two ways to derive the quaternionic angular information from different perspectives. A pattern encoding operation is finally conducted on the obtained angular information to obtain QLABP. The effectiveness of QLABP has successfully been evaluated by comparing with several state-of-the-art descriptors.

Keywords

Quaternionic representation (QR) Local binary pattern (LBP) Quaternionic angular information Image classification 

Notes

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 61702129, 61772149, U1701267, and 61320106008), China Postdoctoral Science Foundation (No. 2018M633047), Guangxi Science and Technology Project (No. 2018AD19029), the Macau Science and Technology Development Fund under Grant FDCT/189/2017/A3, and by the Research Committee at University of Macau under Grants MYRG2016-00123-FST and MYRG2018-00136-FST.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Backes AR, Casanova D, Bruno OM (2012) Color texture analysis based on fractal descriptors. Pattern Recognit 45(5):1984–1992CrossRefGoogle Scholar
  2. 2.
    Bianconi F, Fernández A, González E et al (2009) Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognit Lett 30(8):765–773CrossRefGoogle Scholar
  3. 3.
    Campana L, Keogh J (2010) A compression-based distance measure for texture. Stat Anal Data Min ASA Data Sci J 3(6):381–398MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen J, Shan S, He C et al (2010) WLD: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720CrossRefGoogle Scholar
  5. 5.
    Chhabra P, Garg NK, Kumar M (2018) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3677-9 Google Scholar
  6. 6.
    Ell T (1992) Hypercomplex spectral transforms. PhD dissertation, University of Minnesota, MinneapolisGoogle Scholar
  7. 7.
    Ell T, Sangwine S (2007) Hypercomplex Fourier transforms of color images. IEEE Trans Image Process 16(1):22–35MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gai S, Wan MH, Wang L, Yang CH (2014) Reduced quaternion matrix for color texture classification. Neural Comput Appl 25(3–4):945–954CrossRefGoogle Scholar
  9. 9.
    Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video captioning with attention-based lstm and semantic consistency. IEEE Trans Multimed 19(9):2045–2055CrossRefGoogle Scholar
  10. 10.
    Geng T, Yang M, You Z, Cai Y, Huang F (2018) Multiscale overlapping blocks binarized statistical image features descriptor with flip-free distance for face verification in the wild. Neural Comput Appl 30(10):3243–3252CrossRefGoogle Scholar
  11. 11.
    Guha T, Ward RK (2014) Image similarity using sparse representation and compression distance. IEEE Trans Multimed 16(4):980–987CrossRefGoogle Scholar
  12. 12.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hamilton WR, Hamilton WE (1866) Elements of quaternions. Longmans, Green, & Company, LondonzbMATHGoogle Scholar
  14. 14.
    Hoang MA, Geusebroek JM, Smeulders AWM (2005) Color texture measurement and segmentation. Signal Process 85(2):265–275CrossRefzbMATHGoogle Scholar
  15. 15.
  16. 16.
    Junior J, Cortez C, Backes R (2014) Color texture classification using shortest paths in graphs. IEEE Trans Image Process 23(9):3751–3761MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lan R, Zhou Y (2016) Quaternion-Michelson descriptor for color image classification. IEEE Trans Image Process 25(11):5281–5292MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lan R, Zhou Y, Tang YY (2017) Quaternionic weber local descriptor of color images. IEEE Trans Circuits Syst Video Technol 27(2):261–274CrossRefGoogle Scholar
  20. 20.
    Lan R, Zhou Y, Tang YY, Chen CLP (2014) Person reidentification using quaternionic local binary pattern. In: IEEE international conference on multimedia and expo (ICME), pp 1–6Google Scholar
  21. 21.
    Lee SH, Choi JY, Ro YM, Plataniotis KN (2012) Local color vector binary patterns from multichannel face images for face recognition. IEEE Trans Image Process 21(4):2347–2353MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu G, Li Z, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recognit 44(9):2123–2133CrossRefGoogle Scholar
  23. 23.
    Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurr Comput Pract Exp 29(6):e3927CrossRefGoogle Scholar
  24. 24.
    Lu H, Li Y, Uemura T, Ge Z, Xu X, He L, Serikawa S, Kim H (2017) Fdcnet: filtering deep convolutional network for marine organism classification. Multimed Tools Appl 77(17):21847–21860CrossRefGoogle Scholar
  25. 25.
    Nguyen D, Zong Z, Ogunbona P, Li W (2010) Object detection using non-redundant local binary patterns. In: 17th IEEE international conference on image processing (ICIP), pp 4609–4612Google Scholar
  26. 26.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  27. 27.
    Paschos G, Petrou M (2003) Histogram ratio features for color texture classification. Pattern Recognit Lett 24(1):309–314CrossRefGoogle Scholar
  28. 28.
    Porebski A, Vandenbroucke N, Macaire L (2008) Haralick feature extraction from LBP images for color texture classification. In: First workshops on image processing theory, tools and applications, pp 1–8Google Scholar
  29. 29.
    Satpathy A, Jiang X, Eng H (2014) LBP based edge-texture features for object recognition. IEEE Trans Image Process 23(5):1953–1963MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32CrossRefGoogle Scholar
  31. 31.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang D, Lu H, Li X (2011) Two dimensional principal components of natural images and its application. Neurocomputing 74(17):2745–2753CrossRefGoogle Scholar
  33. 33.
    Wang D, Lu H, Yang MH (2015) Kernel collaborative face recognition. Pattern Recognit 48(10):3025–3037CrossRefGoogle Scholar
  34. 34.
    Weeks J, Lehoucq R, Uzan JP (2003) Detecting topology in a nearly flat spherical universe. Class Quantum Gravity 20(8):1529MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu X, He L, Lu H, Gao L, Ji Y (2018) Deep adversarial metric learning for cross-modal retrieval. World Wide Web.  https://doi.org/10.1007/s11280-018-0541-x Google Scholar
  36. 36.
    Xu X, He L, Shimada A, Taniguchi R, Lu H (2016) Learning unified binary codes for cross-modal retrieval via latent semantic hashing. Neurocomputing 213:191–203CrossRefGoogle Scholar
  37. 37.
    Xu X, Shen F, Yang Y, Shen HT, Li X (2017) Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans Image Process 26(5):2494–2507MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang M, Qian YQ, Xue LJ, Li H, Deng LY, Wang CX (2018) G2P: a new descriptor for pedestrian detection. Neural Comput Appl.  https://doi.org/10.1007/s00521-018-3815-4 Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Rushi Lan
    • 1
    • 2
  • Huimin Lu
    • 3
    Email author
  • Yicong Zhou
    • 4
  • Zhenbing Liu
    • 5
  • Xiaonan Luo
    • 5
  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Guangxi Key Laboratory of Intelligent Processing of Computer Image and GraphicsGuilin University of Electronic TechnologyGuilinChina
  3. 3.Department of Mechanical and Control of EngineeringKyushu Institute of TechnologyKitakyushuJapan
  4. 4.Department of Computer and Information ScienceUniversity of MacauMacaoChina
  5. 5.Guangxi Key Laboratory of Trusted SoftwareGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations