Neural Computing and Applications

, Volume 29, Issue 8, pp 319–335 | Cite as

Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm

  • Salvador Hinojosa
  • Diego Oliva
  • Erik Cuevas
  • Gonzalo Pajares
  • Omar Avalos
  • Jorge Gálvez
Original Article


This paper presents two multi-criteria optimization techniques: the Multi-Objective Crow Search Algorithm (MOCSA) and an improved chaotic version called Multi-Objective Chaotic Crow Search Algorithm (MOCCSA). Both methods MOCSA and MOCCSA are based on an enhanced version of the recently published Crow Search Algorithm. Crows are intelligent animals with interesting strategies for protecting their food hatches. This compelling behavior is extended into a Multi-Objective approach. MOCCSA uses chaotic-based criteria on the optimization process to improve the diversity of solutions. To determinate if the performance of the algorithm is significantly enhanced, the incorporation of a chaotic operator is further validated by a statistical comparison between the proposed MOCCSA and its chaotic-free counterpart (MOCSA) indicating that the results of the two algorithms are significantly different from each other. The performance of MOCCSA is evaluated by a set of standard benchmark functions, and the results are contrasted with two well-known algorithms: Multi-Objective Dragonfly Algorithm and Multi-Objective Particle Swarm Optimization. Both quantitative and qualitative results show competitive results for the proposed approach.


Multi-Objective optimization Evolutionary algorithms Chaotic maps Crow Search Algorithm 



The second author acknowledges The National Council of Science and Technology of Mexico (CONACyT) for the doctoral Grant number 298285 for supporting this research.

Compliance with ethical standards

This research was partially supported by The National Council of Science and Technology of Mexico (CONACyT) for the doctoral Grant number 298285.None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Conflict of interest

It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Yang X (2010) Engineering optimization. Eng Optim. Wiley, Hoboken, pp 15–28CrossRefGoogle Scholar
  2. 2.
    Araghi S, Khosravi A, Creighton D (2015) Intelligent cuckoo search optimized traffic signal controllers for multi-intersection network. Expert Syst Appl 42:4422–4431. doi: 10.1016/j.eswa.2015.01.063 CrossRefGoogle Scholar
  3. 3.
    Bekdaş G, Nigdeli SM, Yang X-S (2015) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37:322–331. doi: 10.1016/j.asoc.2015.08.037 CrossRefGoogle Scholar
  4. 4.
    Hong W-C (2009) Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers Manag 50:105–117. doi: 10.1016/j.enconman.2008.08.031 CrossRefGoogle Scholar
  5. 5.
    Walia GS, Kapoor R (2014) Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search. Expert Syst Appl 41:6315–6326. doi: 10.1016/j.eswa.2014.03.012 CrossRefGoogle Scholar
  6. 6.
    Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. doi: 10.1007/s11276-014-0817-8
  7. 7.
    Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7:205–230. doi: 10.1162/evco.1999.7.3.205 CrossRefGoogle Scholar
  8. 8.
    Deb K, Pratab S, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NGSA-II. IEEE Trans Evol Comput 6:182–197. doi: 10.1109/4235.996017 CrossRefGoogle Scholar
  9. 9.
    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271. doi: 10.1109/4235.797969 CrossRefGoogle Scholar
  10. 10.
    Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou KC et al (eds) Proceedings of evolutionary methods for design, optimization and control with application to industrial problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, pp 95–100Google Scholar
  11. 11.
    Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. doi: 10.1109/TEVC.2004.826067 CrossRefGoogle Scholar
  12. 12.
    Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172. doi: 10.1162/106365600568167 CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Li H (2007) MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11:712–731. doi: 10.1109/TEVC.2007.892759 CrossRefGoogle Scholar
  14. 14.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. doi: 10.1007/s00521-015-1920-1 CrossRefGoogle Scholar
  15. 15.
    Suman B (2005) Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput Chem Eng 29:1131–1147. doi: 10.1016/j.compchemeng.2004.12.002 CrossRefGoogle Scholar
  16. 16.
    von Lücken C, Barán B, Brizuela C (2014) A survey on multi-objective evolutionary algorithms for many-objective problems. Comput Optim Appl 58:707–756. doi: 10.1007/s10589-014-9644-1 MathSciNetzbMATHGoogle Scholar
  17. 17.
    Deb K, Deb K (2014) Multi-objective optimization. Search methodol. Springer, Boston, pp 403–449CrossRefGoogle Scholar
  18. 18.
    Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49:537–558. doi: 10.1007/s00158-013-0996-4 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sağ T, Çunkaş M (2015) Color image segmentation based on multiobjective artificial bee colony optimization. Appl Soft Comput 34:389–401. doi: 10.1016/j.asoc.2015.05.016 CrossRefGoogle Scholar
  20. 20.
    Costa CBB, Potrich E, Cruz AJG (2016) Multiobjective optimization of a sugarcane biorefinery involving process and environmental aspects. Renew Energy 96:1142–1152. doi: 10.1016/j.renene.2015.10.043 CrossRefGoogle Scholar
  21. 21.
    Ahmadi A, Tiruta-Barna L (2015) A Process Modelling-Life Cycle Assessment-Multiobjective Optimization tool for the eco-design of conventional treatment processes of potable water. J Clean Prod 100:116–125. doi: 10.1016/j.jclepro.2015.03.045 CrossRefGoogle Scholar
  22. 22.
    Ruiz AB, Sindhya K, Miettinen K et al (2015) E-NAUTILUS: a decision support system for complex multiobjective optimization problems based on the NAUTILUS method. Eur J Oper Res 246:218–231. doi: 10.1016/j.ejor.2015.04.027 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Garcia DJ, You F (2015) Multiobjective optimization of product and process networks: general modeling framework, efficient global optimization algorithm, and case studies on bioconversion. AIChE J 61:530–554. doi: 10.1002/aic.14666 CrossRefGoogle Scholar
  24. 24.
    Fang J, Gao Y, Sun G et al (2015) Multiobjective robust design optimization of fatigue life for a truck cab. Reliab Eng Syst Saf 135:1–8. doi: 10.1016/j.ress.2014.10.007 CrossRefGoogle Scholar
  25. 25.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. doi: 10.1109/4235.585893 CrossRefGoogle Scholar
  26. 26.
    Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085. doi: 10.1016/j.amc.2006.09.087 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bucolo M, Caponetto R, Fortuna L et al (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2:4–19. doi: 10.1109/MCAS.2002.1167624 CrossRefGoogle Scholar
  28. 28.
    Yang D, Liu Z, Zhou J (2014) Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun Nonlinear Sci Numer Simul 19:1229–1246. doi: 10.1016/j.cnsns.2013.08.017 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ott E (2002) Chaos in dynamical systems. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang D, Yang P, Zhang C (2012) Chaotic characteristic analysis of strong earthquake ground motions. Int J Bifurc Chaos. doi: 10.1142/S0218127412500459 zbMATHGoogle Scholar
  31. 31.
    Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7:289–304. doi: 10.1109/TEVC.2003.810069 CrossRefGoogle Scholar
  32. 32.
    Willi-Hans S (2014) The nonlinear workbook: chaos, fractals, cellular automata, neural networks, genetic algorithms, fuzzy logic, 6th edn. World Scientific Publishing Co Inc, HackensackGoogle Scholar
  33. 33.
    Chuang L-Y, Yang C-H, Li J-C (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11:239–248. doi: 10.1016/j.asoc.2009.11.014 CrossRefGoogle Scholar
  34. 34.
    Yuan X, Zhao J, Yang Y, Wang Y (2014) Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput 17:12–22. doi: 10.1016/j.asoc.2013.12.016 CrossRefGoogle Scholar
  35. 35.
    Gokhale SS, Kale VS (2016) An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination. Int J Electr Power Energy Syst 78:336–342. doi: 10.1016/j.ijepes.2015.11.087 CrossRefGoogle Scholar
  36. 36.
    Afrabandpey H, Ghaffari M, Mirzaei A, Safayani M (2014) A novel Bat Algorithm based on chaos for optimization tasks. In: 2014 Iranian conference intelligent systems. IEEE, pp 1–6Google Scholar
  37. 37.
    Song Y, Chen Z, Yuan Z (2007) Neural network nonlinear predictive control based on tent-map chaos optimization. Chin J Chem Eng 15:539–544. doi: 10.1016/S1004-9541(07)60121-9 CrossRefGoogle Scholar
  38. 38.
    Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. doi: 10.1016/j.compstruc.2016.03.001 CrossRefGoogle Scholar
  39. 39.
    Coello Coello CA (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front Comput Sci China 3:18–30. doi: 10.1007/s11704-009-0005-7 CrossRefGoogle Scholar
  40. 40.
    Zhou A, Qu B-Y, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49. doi: 10.1016/j.swevo.2011.03.001 CrossRefGoogle Scholar
  41. 41.
    Black H (2013) Social skills to crow about. Sci Am Mind 24:12. doi: 10.1038/scientificamericanmind0913-12 CrossRefGoogle Scholar
  42. 42.
    Zhang Q, Zhou A, Zhao S, et al (2009) Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech Rep 1–30Google Scholar
  43. 43.
    Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. Springer, Berlin, pp 505–519zbMATHGoogle Scholar
  44. 44.
    Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. PhD ThesisGoogle Scholar
  45. 45.
    Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). pp 584–593Google Scholar
  46. 46.
    López-Ibáñez M, Paquete L, Stützle T (2010) Exploratory analysis of stochastic local search algorithms in biobjective optimization. Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 209–222CrossRefGoogle Scholar
  47. 47.
    García S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644. doi: 10.1007/s10732-008-9080-4 CrossRefzbMATHGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad InformáticaUniversidad Complutense de MadridMadridSpain
  2. 2.División de Electrónica y ComputaciónUniversidad de Guadalajara, CUCEIGuadalajaraMexico

Personalised recommendations