Advertisement

Neural Computing and Applications

, Volume 31, Issue 7, pp 2233–2241 | Cite as

A reproducing kernel Hilbert space pseudospectral method for numerical investigation of a two-dimensional capillary formation model in tumor angiogenesis problem

  • M. EmamjomeEmail author
  • B. Azarnavid
  • H. Roohani Ghehsareh
Original Article

Abstract

In the current work, an interesting and challenging mathematical model for a two-dimensional capillary formation model in tumor angiogenesis problem will be investigated numerically. The mathematical model describes progression of tumor angiogenic factor in a unit square space domain, namely the extracellular matrix. An efficient numerical technique is performed to approximate the numerical solution of the governing practical model. The method is based on reproducing kernel Hilbert spaces in the framework of the standard pseudospectral method. Using reproducing kernel Hilbert space operational matrices and elimination the treatment of complicated boundary conditions are the main advantages of the proposed method. Some illustrative examples are included to demonstrate the effectiveness and versatility of the technique to deal with the governing mathematical model in both linear and nonlinear models .

Keywords

Reproducing kernel Hilbert space Pseudospectral method Capillary formation Tumor angiogenic factor 

Notes

Acknowledgements

The first author would like to thank “Golpayegan University of Technology” for supporting this work financially under the contract number 94500/3141. The authors would like to express their thankfulness to anonymous referees for their helpful constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

References

  1. 1.
    Paweletz N, Knierim M (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9(3):197–242CrossRefGoogle Scholar
  2. 2.
    Schor AM, Schor SL (1983) Tumor angiogenesis. J Pathol 141(3):385–413CrossRefGoogle Scholar
  3. 3.
    Anderson ARA, Chaplain MAJ (1998) A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett 11(3):109–114MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–6CrossRefGoogle Scholar
  5. 5.
    Pamuk S (2003) Qualitative analysis of a mathematical model for capillary formation in tumor angiogenesis. Math Models Methods Appl Sci 13(01):19–33MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M (2001) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63(5):801–863zbMATHCrossRefGoogle Scholar
  7. 7.
    Folkman J (1984) Angiogenesis. Biology of endothelial cells. Springer, Berlin, pp 412–428CrossRefGoogle Scholar
  8. 8.
    Pamuk S, Erdem A (2007) The method of lines for the numerical solution of a mathematical model for capillary formation: the role of endothelial cells in the capillary. Appl Math Comput 186:831–835MathSciNetzbMATHGoogle Scholar
  9. 9.
    Saadatmani A, Dehghan M (2008) Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the tau method. Commun Numer Methods Eng 24:146774MathSciNetGoogle Scholar
  10. 10.
    Gücüyenen N, Tanoǧlu G (2011) Iterative operator splitting method for capillary formation model in tumor angiogenesis problem: analysis and application. Int J Numer Methods Biomed Eng 27:174050MathSciNetCrossRefGoogle Scholar
  11. 11.
    Abbasbandy S, Ghehsareh Roohani H, Hashim I (2012) Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. s using a meshfree method based on the radial basis functions. Eng Anal Bound Elem 36(12):18118zbMATHCrossRefGoogle Scholar
  12. 12.
    Pamuk S (2004) Steadystate analysis of a mathematical model for capillary network formation in the absence of tumor source. Math Biosci 189:2138MathSciNetCrossRefGoogle Scholar
  13. 13.
    Erdem A, Pamuk S (2007) The method of lines for the numerical solution of a mathematical model for capillary formation: the role of tumor angiogenic factor in the extra-cellular matrix. Appl Math Comput 186(1):891–897MathSciNetzbMATHGoogle Scholar
  14. 14.
    Schaback R (2007) Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J Numer Anal 45(1):333–351MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Abbasbandy S, Azarnavid B, Alhuthali MS (2015) A shooting reproducing kernel Hilbert space method for multiple solutions of nonlinear boundary value problems. J Comput Appl Math 279:293–305MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cialenco I, Fasshauer GE, Ye Q (2012) Approximation of stochastic partial differential equations by a kernel-based collocation method. Int J Comput Math 89(18):2543–2561MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Du H, Cui MG (2008) Approximate solution of the Fredholm integral equation of the first kind in a reproducing kernel Hilbert space. Appl Math Lett 21(6):617–623MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Arqub OA, Al-Smadi M, Momani S, Hayat T (2016) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 1–16. doi: 10.1007/s00500-016-2262-3
  19. 19.
    Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610Google Scholar
  20. 20.
    Arqub OA, Mohammed AS, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302zbMATHCrossRefGoogle Scholar
  21. 21.
    Arqub OA (2016) The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci 39(15):4549–4562MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Arqub OA, Maayah B (2016) Solutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm with error estimates. Neural Comput Appl 1–15Google Scholar
  23. 23.
    Fasshauer GE, Hickernell FJ, Ye Q (2015) Solving support vector machines in reproducing kernel Banach spaces with positive definite functions. Appl Comput Harmonic Anal 38(1):115–139MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cui MG, Lin Y (2009) Nonlinear numerical analysis in the reproducing kernel space. Nova Science, New YorkzbMATHGoogle Scholar
  25. 25.
    Geng F, Cui MG, Zhang B (2010) Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods. Nonlinear Anal Real World Appl 11:637–644MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Geng F, Cui MG (2007) Solving a nonlinear system of second order boundary value problems. J Math Anal Appl 327:1167–1181MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Azarnavid B, Parvaneh F, Abbasbandy S (2015) Picard-reproducing kernel Hilbert space method for solving generalized singular nonlinear lane-emden type equations. Math Model Anal 20(6):754–767MathSciNetCrossRefGoogle Scholar
  28. 28.
    Abbasbandy S, Azarnavid B (2016) Some error estimates for the reproducing kernel Hilbert spaces method. J Comput Appl Math 296:789–797MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Al-Smadi M, Arqub OA, Shawagfeh N, Momani S (2016) Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl Math Comput 291:137–148MathSciNetzbMATHGoogle Scholar
  30. 30.
    Geng F, Qian SP, Li S (2014) A numerical method for singularly perturbed turning point problems with an interior layer. J Comput Appl Math 255:97–105MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Inc M, Akgul A, Kilicman A (2012) Explicit solution of telegraph equation based on reproducing kernel method. J Funct Spaces Appl 2012, Article ID 984682Google Scholar
  32. 32.
    Mustafa Inc, Ali Akgul (2013) The reproducing kernel Hilbert space method for solving Troeschs problem. J Assoc Arab Univer Basic Appl Sci 14(1):19–27Google Scholar
  33. 33.
    Inc M, Akgul A, Kilicman A (2013) A novel method for solving kdv equation based on reproducing kernel hilbert space method. Abstr Appl Anal 2013, Article ID 578942Google Scholar
  34. 34.
    Inc M, Akgul A, Kilicman A (2013) A new application of the reproducing kernel hilbert space method to solve MHD Jeffery-Hamel flows problem in nonparallel walls. Abstr Appl Anal 2013, Article ID 239454Google Scholar
  35. 35.
    Inc M, Akgul A, Kilicman A (2013)Numerical solutions of the second-order one-dimensional telegraph equation based on reproducing kernel Hilbert space method. Abstr Appl Anal 2013, Article ID 768963Google Scholar
  36. 36.
    Akgul A (2014) Approximate solutions for MHD squeezing fluid flow by a novel method. Bound Value Probl 2014(1):18MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Inc M, Akgul A (2014) Numerical solution of seventh-order boundary value problems by a novel method. Abstr Appl Anal 2014, Article ID 745287Google Scholar
  38. 38.
    Ali Akgul (2014) A new method for approximate solutions of fractional order boundary value problems. Neural Parallel Sci Comput 22:223–238MathSciNetGoogle Scholar
  39. 39.
    Akgul A, Kilicman A (2015) Solving delay differential equations by an accurate method with interpolation. Abstr Appl Anal 2015, Article ID 676939Google Scholar
  40. 40.
    Mustafa Inc, Ali Akgul, Fazhan Geng (2015) Reproducing kernel Hilbert space method for solving Bratu’s problem. Bull Malays Math Sci Soc 38(1):271–287MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Akgul A (2015) New reproducing kernel functions. Math Probl Eng 2015, Article ID 158134Google Scholar
  42. 42.
    Akgul A, Karatas E, Baleanu D (2015) Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Adv Differ Equ 2015(1):220MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Akgül A, Inc M, Karatas E (2015) Reproducing kernel functions for difference equations. Discret Contin Dyn Syst Ser S 8(6):1055–1064. doi: 10.3934/dcdss.2015.8.1055
  44. 44.
    Akgul A, Inc M, Kilicman A (2016) A comparison on solutions of fifth-order boundary-value problems. Appl Math Inf Sci 10(2):755–764CrossRefGoogle Scholar
  45. 45.
    Akgul A, Kilicman A, Baleanu D (2016) A new approach for one-dimensional sine-Gordon equation. Adv Differ Equ 2016(1):8MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Akgul A (2016) On the solution of higher-order difference equations. Math Methods Appl Sci. doi: 10.1002/mma.3870 zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Maayah B, Bushnaq S, Momani S, Abu Arqub, O.(2014) Iterative multistep reproducing kernel Hilbert space method for solving strongly nonlinear oscillators. Adv Math PhysGoogle Scholar
  48. 48.
    Geng F, Cui M (2012) A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett 25(5):818–823MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Azarnavid B, Parand K (2016) Imposing various boundary conditions on radial basis functions. arXiv preprint arXiv:1611.07292
  50. 50.
    Shen J, Tang T, Wang LL (2011) Spectral methods: algorithms, analysis and applications, vol 41. Springer, BerlinzbMATHCrossRefGoogle Scholar
  51. 51.
    Fasshauer GE (2005) RBF collocation methods and pseudospectral methods. Bound Elem XVII:47–57MathSciNetGoogle Scholar
  52. 52.
    Wendland H (2004) Scattered data approximation, vol 17. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  • M. Emamjome
    • 1
    Email author
  • B. Azarnavid
    • 2
  • H. Roohani Ghehsareh
    • 3
  1. 1.Department of MathematicsGolpayegan University of TechnologyGolpayeganIran
  2. 2.Department of Computer SciencesShahid Beheshti University, G.C.TehranIran
  3. 3.Department of MathematicsMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations