Advertisement

Neural Computing and Applications

, Volume 31, Supplement 2, pp 1091–1101 | Cite as

Neural dynamics-based Poisson propagation for deformable modelling

  • Jinao ZhangEmail author
  • Yongmin Zhong
  • Julian Smith
  • Chengfan Gu
Original Article

Abstract

This paper presents a new methodology from the standpoint of energy propagation for real-time and nonlinear modelling of deformable objects. It formulates the deformation process of a soft object as a process of energy propagation, in which the mechanical load applied to the object to cause deformation is viewed as the equivalent potential energy based on the law of conservation of energy and is further propagated among masses of the object based on the nonlinear Poisson propagation. Poisson propagation of mechanical load in conjunction with non-rigid mechanics of motion is developed to govern the dynamics of soft object deformation. Further, these two governing processes are modelled with cellular neural networks to achieve real-time computational performance. A prototype simulation system with a haptic device is implemented for real-time simulation of deformable objects with haptic feedback. Simulations, experiments as well as comparisons demonstrate that the proposed methodology exhibits nonlinear force–displacement relationship, capable of modelling large-range deformation. It can also accommodate homogeneous, anisotropic and heterogeneous materials by simply changing the constitutive coefficient value of mass points.

Keywords

Deformable objects Nonlinear deformation Poisson equation Cellular neural networks Real-time performance 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Cover SA, Ezquerra NF, O’Brien JF, Rowe R, Gadacz T, Palm E (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13(6):68–75. doi: 10.1109/38.252559 Google Scholar
  2. 2.
    CaniGascuel M, Desbrun M (1997) Animation of deformable models using implicit surfaces. IEEE Trans Vis Comput Graph 3(1):39–50. doi: 10.1109/2945.582343 Google Scholar
  3. 3.
    Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. ACM SIGGRAPH Comput Graph 21(4):205–214. doi: 10.1145/37401.37427 Google Scholar
  4. 4.
    Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410. doi: 10.1016/j.media.2013.11.001 Google Scholar
  5. 5.
    Frisken-Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the symposium on interactive 3D graphics, pp 149–154. doi: 10.1145/253284.253324
  6. 6.
    Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7(4):246–252. doi: 10.1080/21655979.2016.1197634 Google Scholar
  7. 7.
    Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11(6):919–928. doi: 10.1007/s11548-016-1373-8 Google Scholar
  8. 8.
    Misra S, Ramesh KT, Okamura AM (2008) Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleoper Virtual Environ 17(5):463–491. doi: 10.1162/pres.17.5.463 Google Scholar
  9. 9.
    Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5(1):62–73. doi: 10.1109/2945.764872 zbMATHGoogle Scholar
  10. 10.
    Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21(8–10):707–716. doi: 10.1007/s00371-005-0310-6 Google Scholar
  11. 11.
    Weber D, Mueller-Roemer J, Altenhofen C, Stork A, Fellner D (2015) Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput Graph 53:185–195. doi: 10.1016/j.cag.2015.06.010 Google Scholar
  12. 12.
    Yang C, Li S, Lan Y, Wang L, Hao A, Qin H (2016) Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput Aided Geom Des 43:53–67. doi: 10.1016/j.cagd.2016.02.014 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Huang J, Liu X, Bao H, Guo B, Shum H-Y (2006) An efficient large deformation method using domain decomposition. Comput Graph 30(6):927–935. doi: 10.1016/j.cag.2006.08.014 Google Scholar
  14. 14.
    Strbac V, Sloten JV, Famaey N (2015) Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA. Finite Elem Anal Des 105:79–89. doi: 10.1016/j.final.2015.07.005 Google Scholar
  15. 15.
    Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16(8):437–452. doi: 10.1007/Pl00007215 zbMATHGoogle Scholar
  16. 16.
    Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36(5):356–365. doi: 10.1016/j.compmedimag.2012.03.001 Google Scholar
  17. 17.
    Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66. doi: 10.1016/j.enganabound.2013.08.014 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2016) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44(1):3–15. doi: 10.1007/s10439-015-1469-2 Google Scholar
  19. 19.
    Xu S, Liu X, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60(1):14–20. doi: 10.1109/Tim.2010.2065450 Google Scholar
  20. 20.
    Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19(2):801–816. doi: 10.1016/j.simpat.2010.11.005 Google Scholar
  21. 21.
    Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int J Numer Methods Biomed Eng 23(2):121–134. doi: 10.1002/cnm.887 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Goulette F, Chen Z-W (2015) Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links. Comput Methods Appl Mech Eng 295:18–38. doi: 10.1016/j.cma.2015.06.015 MathSciNetGoogle Scholar
  23. 23.
    Zhong Y, Shirinzadeh B, Alici G, Smith J (2008) A Poisson-based methodology for deformable object simulation. Int J Model Simul 28(2):156. doi: 10.2316/Journal.205.2008.2.205-4551 Google Scholar
  24. 24.
    Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, CambridgeGoogle Scholar
  25. 25.
    Selvadurai AP (2013) Partial differential equations in mechanics 2: the biharmonic equation, Poisson’s equation, vol 2. Springer, BerlinGoogle Scholar
  26. 26.
    Chua LO, Roska T (1993) The CNN Paradigm. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):147–156. doi: 10.1109/81.222795 zbMATHGoogle Scholar
  27. 27.
    Thiran P, Setti G, Hasler M (1998) An approach to information propagation in 1-D cellular neural networks—part I: local diffusion. IEEE Trans Circuits Syst I Fundam Theory Appl 45(8):777–789. doi: 10.1109/81.704819 zbMATHGoogle Scholar
  28. 28.
    Setti G, Thiran P, Serpico C (1998) An approach to information propagation in 1-D cellular neural networks—part II: global propagation. IEEE Trans Circuits Syst I Fundam Theory Appl 45(8):790–811. doi: 10.1109/81.704820 zbMATHGoogle Scholar
  29. 29.
    Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Lotz K (1995) Simulating nonlinear waves and partial differential equations via CNN—part II: typical examples. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):816–820. doi: 10.1109/81.473591 Google Scholar
  30. 30.
    Szolgay P, Vörös G, Erőss G (1993) On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans Circuits Syst I Fundam Theory Appl 40(3):222–227. doi: 10.1109/81.222805 zbMATHGoogle Scholar
  31. 31.
    Roska T, Chua LO, Wolf D, Kozek T, Tetzlaff R, Puffer F (1995) Simulating nonlinear waves and partial differential equations via CNN—part I: basic techniques. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):807–815. doi: 10.1109/81.473590 Google Scholar
  32. 32.
    Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272. doi: 10.1109/31.7600 MathSciNetzbMATHGoogle Scholar
  33. 33.
    Vijayan P, Kallinderis Y (1994) A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids. J Comput Phys 113(2):249–267. doi: 10.1006/jcph.1994.1133 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I Fundam Theory Appl 42(10):559–577. doi: 10.1109/81.473564 MathSciNetGoogle Scholar
  35. 35.
    Jingya Z, Jiajun W, Xiuying W, Dagan F (2014) The adaptive FEM elastic model for medical image registration. Phys Med Biol 59(1):97–118. doi: 10.1088/0031-9155/59/1/97 Google Scholar
  36. 36.
    Bro-Nielsen M, Cotin S (1996) Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput Graph Forum 15(3):57–66. doi: 10.1111/1467-8659.1530057 Google Scholar
  37. 37.
    Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255. doi: 10.1016/j.neucom.2010.03.021 Google Scholar
  38. 38.
    Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118(S1):39–52. doi: 10.1016/j.compstruc.2012.04.001 Google Scholar
  39. 39.
    Picinbono G, Lombardo JC, Delingette H, Ayache N (2002) Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Anim 13(3):147–167. doi: 10.1002/vis.257 zbMATHGoogle Scholar
  40. 40.
    Xia P (2016) New advances for haptic rendering: state of the art. Vis Comput. doi: 10.1007/s00371-016-1324-y Google Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.School of EngineeringRMIT UniversityBundooraAustralia
  2. 2.Department of Surgery, School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia

Personalised recommendations