Advertisement

Neural Computing and Applications

, Volume 31, Supplement 1, pp 557–572 | Cite as

Powered Gaussian kernel spectral clustering

  • Yessica Nataliani
  • Miin-Shen YangEmail author
Original Article

Abstract

Spectral clustering is a useful tool for clustering data. It separates data points into different clusters using eigenvectors corresponding to eigenvalues of the similarity matrix from a data set. There are various types of similarity functions to be used for spectral clustering. In this paper, we propose a powered Gaussian kernel function for spectral clustering. We first consider a Gaussian kernel similarity function with a power parameter, and then use a modified correlation comparison algorithm to estimate the power parameter. This parameter can be used for separating points that actually lie on different clusters, but with small distance. We then use the maximum value among all minimum distances between data points to get better clustering results. Using the estimated power parameter and the maximum value among minimum distances is able to improve spectral clustering. Some numerical data, real data sets, and images are used for making comparisons between the powered Gaussian kernel spectral clustering algorithm and some existing methods. The comparison results show the superiority and effectiveness of the proposed method.

Keywords

Spectral clustering Powered Gaussian kernel function Similarity matrix Graph Laplacian matrix 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and suggestions to improve the presentation of the paper. This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 105-2118-M-033-004-MY2.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    Dubois D, Prade H (1980) Fuzzy Sets and systems: theory and applications. Academic Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, New JerseyzbMATHGoogle Scholar
  4. 4.
    MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, pp 281–297Google Scholar
  5. 5.
    Pollard D (1982) Quantization and the method of k-means. IEEE Trans Inf Theory 28:199–205MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New YorkCrossRefzbMATHGoogle Scholar
  7. 7.
    Yang MS (1993) A survey of fuzzy clustering. Math Comput Model 18:1–16MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1:98–110CrossRefGoogle Scholar
  9. 9.
    Yang MS, Lai CY (2011) A robust automatic merging possibilistic clustering method. IEEE Trans Fuzzy Syst 19:26–41CrossRefGoogle Scholar
  10. 10.
    Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17:790–799CrossRefGoogle Scholar
  11. 11.
    Wu KL, Yang MS (2007) Mean shift-based clustering. Pattern Recogn 40:3035–3052CrossRefzbMATHGoogle Scholar
  12. 12.
    von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nascimento MCV, de Carvalho ACPLF (2011) Spectral methods for graph clustering—a survey. Eur J Oper Res 211:221–231MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jia H, Ding S, Xu X, Nie R (2014) The latest research progress on spectral clustering. Neural Comput Appl 24:1477–1486CrossRefGoogle Scholar
  15. 15.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905CrossRefGoogle Scholar
  16. 16.
    Kong W, Hu S, Zhang J, Dai G (2013) Robust and smart spectral clustering from normalized cut. Neural Comput Appl 23:1503–1512CrossRefGoogle Scholar
  17. 17.
    Newman M (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:36–104MathSciNetCrossRefGoogle Scholar
  18. 18.
    Oliveira S, Ribeiro JFF, Seok SC (2009) A spectral clustering algorithm for manufacturing cell formation. Comput Ind Eng 57:1008–1014CrossRefGoogle Scholar
  19. 19.
    Ding S, Jia H, Zhang L, Jin F (2014) Research of semi-supervised spectral clustering algorithm based on pairwise constraints. Neural Comput Appl 24:211–219CrossRefGoogle Scholar
  20. 20.
    Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856Google Scholar
  21. 21.
    Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. In: Advances in neural information processing systemsGoogle Scholar
  22. 22.
    Li XY, Guo LJ (2012) Constructing affinity matrix in spectral clustering based on neighbor propagation. Neurocomputing 97:125–130CrossRefGoogle Scholar
  23. 23.
    Zhang X, Li J, Yu H (2011) Local density adaptive similarity measurement for spectral clustering. Pattern Recogn Lett 32:352–358CrossRefGoogle Scholar
  24. 24.
    Jia H, Ding S, Du M (2015) Self-tuning p-spectral clustering based on shared nearest neighbors. Cogn Comput 7:622–632CrossRefGoogle Scholar
  25. 25.
    Jia H, Ding S, Du M, Xue Y (2016) Approximate normalized cuts without Eigen-decomposition. Inf Sci 374:135–150CrossRefGoogle Scholar
  26. 26.
    Tasdemir K, Yalcin B, Yildirim I (2015) Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures. Pattern Recogn 48:1465–1477CrossRefGoogle Scholar
  27. 27.
    Donath W, Hoffman A (1973) Lower bounds for the partitioning of graphs. IBM J Res Dev 17:420–425MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23:298–305MathSciNetzbMATHGoogle Scholar
  29. 29.
    Chang H, Yeung DY (2008) Robust path-based spectral clustering. Pattern Recogn 41:191–203CrossRefzbMATHGoogle Scholar
  30. 30.
    Yang MS, Wu KL (2004) A similarity-based robust clustering method. IEEE Trans Pattern Anal Mach Intell 26:434–448CrossRefGoogle Scholar
  31. 31.
    Blake CL, Merz CJ (1998) UCI Repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. University of California, Department of Information and Computer Science, Irvine, CA
  32. 32.
    Rebagliati N, Verri A (2011) Spectral clustering with more than K eigenvectors. Neurocomputing 74:1391–1401CrossRefGoogle Scholar
  33. 33.
    Huang L, Li R, Chen H, Gu X, Wen K, Li Y (2014) Detecting network communities using regularized spectral clustering algorithm. Artif Intell Rev 41:579–594CrossRefGoogle Scholar
  34. 34.
    Lei J, Rinaldo A (2015) Consistency of spectral clustering in stochastic block models. Ann Stat 43:215–237MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsChung Yuan Christian UniversityChung-LiTaiwan
  2. 2.Department of Information SystemsSatya Wacana Christian UniversitySalatigaIndonesia

Personalised recommendations