Advertisement

Neural Computing and Applications

, Volume 31, Supplement 1, pp 617–651 | Cite as

An enhanced Bat algorithm with mutation operator for numerical optimization problems

  • Waheed A. H. M. GhanemEmail author
  • Aman Jantan
Original Article

Abstract

This article introduces a new variation of a known metaheuristic method for solving global optimization problems. The proposed algorithm is based on the Bat algorithm (BA), which is inspired by the micro-bat echolocation phenomenon, and addresses the problems of local-optima trapping using a special mutation operator that enhances the diversity of the standard BA, hence the name enhanced Bat algorithm (EBat). The design of EBat is introduced and its performance is evaluated against 24 of the standard benchmark functions, and compared to that of the standard BA, as well as to several well-established metaheuristic techniques. We also analyze the impact of different parameters on the EBat algorithm and determine the best combination of parameter values in the context of numerical optimization. The obtained results show that the new EBat method is indeed a promising addition to the arsenal of metaheuristic algorithms and can outperform several existing ones, including the original BA algorithm.

Keywords

Metaheuristics Bat algorithm Global optimization problem Mutation operator 

Notes

Acknowledgements

This research work was funded by Universiti Sains Malaysia under USM Fellowship 2016 [APEX (1002/JHEA/ATSG4001)] from Institute of Postgraduate Studies, UNIVERSITI SAINS MALAYSIA. The research was also partially supported by the Fundamental Research Grant Scheme (FRGS) for “Content-Based Analysis Framework for Better Email Forensic and Cyber Investigation” [203/PKOMP/6711426].

Reference

  1. 1.
    Sörensen K, Glover FW (2013) Metaheuristics, in encyclopedia of operations research and management science. Springer, p 960–970Google Scholar
  2. 2.
    Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan PressGoogle Scholar
  3. 3.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT pressGoogle Scholar
  4. 4.
    Beyer H-G, Schwefel H-P (2002) Evolution strategies–a comprehensive introduction. Nat Comput 1(1):3–52MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Khatib W, Fleming PJ (1998) The stud GA: a mini revolution? In: Parallel problem solving from nature—PPSN V. SpringerGoogle Scholar
  7. 7.
    Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190–206MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Glover F (1990) Tabu search—part II. ORSA J Comput 2(1):4–32MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Glover F, Laguna M (2013) Tabu Search∗. SpringerGoogle Scholar
  10. 10.
    Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New YorkGoogle Scholar
  11. 11.
    Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization. Computational Intelligence Magazine, IEEE 1(4):28–39CrossRefGoogle Scholar
  12. 12.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26(1):29–41CrossRefGoogle Scholar
  13. 13.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering departmentGoogle Scholar
  14. 14.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver pressGoogle Scholar
  16. 16.
    Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on. IEEEGoogle Scholar
  17. 17.
    Simon D (2008) Biogeography-based optimization. Evolutionary Computation, IEEE Transactions on 12(6):702–713CrossRefGoogle Scholar
  18. 18.
    Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput & Applic 24(7–8):1867–1877CrossRefGoogle Scholar
  19. 19.
    Meng X et al (2014) A new bio-inspired algorithm: chicken swarm optimization, in Advances in swarm intelligence. Springer, p 86–94Google Scholar
  20. 20.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  21. 21.
    Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98CrossRefGoogle Scholar
  23. 23.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic 27(4):1053–1073CrossRefGoogle Scholar
  24. 24.
    Wang, G. G., Deb, S., & Coelho, L. D. S. (2015). Elephant herding optimization. In Computational and Business Intelligence (ISCBI), 2015 3rd International Symposium on (pp. 1-5). IEEE, Bali, IndonesiaGoogle Scholar
  25. 25.
    Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired ComputGoogle Scholar
  26. 26.
    Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249CrossRefGoogle Scholar
  27. 27.
    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133CrossRefGoogle Scholar
  28. 28.
    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67CrossRefGoogle Scholar
  29. 29.
    Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Applic :1–20Google Scholar
  30. 30.
    Yang X-S (2010) A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, p 65–74Google Scholar
  31. 31.
    Kirkpatrick S, Vecchi MP (1983) Optimization by simmulated annealing. Science 220(4598):671–680MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76(2):60–68CrossRefGoogle Scholar
  33. 33.
    Yang X-S, He X (2013) Bat algorithm: literature review and applications. International Journal of Bio-Inspired Computation 5(3):141–149CrossRefGoogle Scholar
  34. 34.
    Horst R, Tuy H (2013) Global optimization: deterministic approaches. Springer Science & Business MediaGoogle Scholar
  35. 35.
    Liu S-H, Mernik M, HrnčIč D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova's mass transfer model. Appl Soft Comput 13(9):3792–3805CrossRefGoogle Scholar
  36. 36.
    Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Computing Surveys (CSUR) 45(3):35zbMATHGoogle Scholar
  37. 37.
    Al-Betar MA (2016) β-Hill climbing: an exploratory local search. Neural Comput Applic :1–16Google Scholar
  38. 38.
    Ghanem WAHM, Jantan A (2016) Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems. Neural Comput Applic :1–19Google Scholar
  39. 39.
    Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation 4(2):150–194CrossRefzbMATHGoogle Scholar
  40. 40.
    Wang X Wang W, Wang Y (2013) An adaptive bat algorithm. In: International conference on intelligent computing. Springer Berlin Heidelberg, pp 216–223Google Scholar
  41. 41.
    Yılmaz S, Küçüksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275CrossRefGoogle Scholar
  42. 42.
    Tsai PW, Pan JS, Liao BY, Tsai MJ, Istanda V (2012) Bat algorithm inspired algorithm for solving numerical optimization problems. In: Applied mechanics and materials, vol 148. Trans Tech Publications, pp 134–137Google Scholar
  43. 43.
    Fister I Jr, Fister D, Yang X-S (2013) A hybrid bat algorithm. arXiv preprint arXiv:1303.6310Google Scholar
  44. 44.
    Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013Google Scholar
  45. 45.
    Kaveh A, Zakian P (2014) Enhanced bat algorithm for optimal design of skeletal structures. Asian J Civial Eng 15(2):179–212Google Scholar
  46. 46.
    Alihodzic A, Tuba M (2014) Improved hybridized bat algorithm for global numerical optimization. In: Computer modelling and simulation (UKSim), 2014 UKSim-AMSS 16th International Conference on, IEEE, pp 57–62Google Scholar

Copyright information

© The Natural Computing Applications Forum 2017

Authors and Affiliations

  1. 1.School of Computer ScienceUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Faculty of Education-SaberUniversity of AdenAdenYemen
  3. 3.Faculty of EngineeringUniversity of AdenAdenYemen

Personalised recommendations