Advertisement

Neural Computing and Applications

, Volume 29, Issue 2, pp 389–399 | Cite as

Hybrid generative–discriminative hash tracking with spatio-temporal contextual cues

  • Manna Dai
  • Shuying Cheng
  • Xiangjian He
Original Article
  • 205 Downloads

Abstract

Visual object tracking is of a great application value in video monitoring systems. Recent work on video tracking has taken into account spatial relationship between the targeted object and its background. In this paper, the spatial relationship is combined with the temporal relationship between features on different video frames so that a real-time tracker is designed based on a hash algorithm with spatio-temporal cues. Different from most of the existing work on video tracking, which is regarded as a mechanism for image matching or image classification alone, we propose a hierarchical framework and conduct both matching and classification tasks to generate a coarse-to-fine tracking system. We develop a generative model under a modified particle filter with hash fingerprints for the coarse matching by the maximum a posteriori and a discriminative model for the fine classification by maximizing a confidence map based on a context model. The confidence map reveals the spatio-temporal dynamics of the target. Because hash fingerprint is merely a binary vector and the modified particle filter uses only a small number of particles, our tracker has a low computation cost. By conducting experiments on eight challenging video sequences from a public benchmark, we demonstrate that our tracker outperforms eight state-of-the-art trackers in terms of both accuracy and speed.

Keywords

Hash algorithm Spatio-temporal cues Hierarchical framework Maximum a posteriori (MAP) Confidence map 

Notes

Acknowledgments

This work was supported by Fujian Provincial Department of Science and Technology (Grant No. 2015H0021).

References

  1. 1.
    Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp 983–990. IEEEGoogle Scholar
  2. 2.
    Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632CrossRefGoogle Scholar
  3. 3.
    Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 1830–1837. IEEEGoogle Scholar
  4. 4.
    Bolme DS, Draper BA, Beveridge JR (2009) Average of synthetic exact filters. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. pp 2105–2112. IEEEGoogle Scholar
  5. 5.
    Dai M, Lin P, Wu L, Chen Z, Lai S, Zhang J, Cheng S, He X (2015) Orderless and blurred visual tracking via spatio-temporal context. In: MultiMedia Modeling, pp. 25–36. SpringerGoogle Scholar
  6. 6.
    Danelljan M, Khan FS, Felsberg M, Weijer Jvd (2014) Adaptive color attributes for real-time visual tracking. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp. 1090–1097. IEEEGoogle Scholar
  7. 7.
    Dewan MAA, Granger E, Marcialis GL, Sabourin R, Roli F (2016) Adaptive appearance model tracking for still-to-video face recognition. Pattern Recognit 49:129–151CrossRefGoogle Scholar
  8. 8.
    Duffner S, Garcia C (2014) Exploiting contextual motion cues for visual object tracking. In: Computer vision-ECCV 2014 workshops, pp 232–243. SpringerGoogle Scholar
  9. 9.
    Hare S, Saffari A, Torr PH (2011) Struck: structured output tracking with kernels. In: 2011 IEEE international conference on computer vision (ICCV), pp. 263–270. IEEEGoogle Scholar
  10. 10.
    Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596CrossRefGoogle Scholar
  11. 11.
    Hong S, Kwak S, Han B (2013) Orderless tracking through model-averaged posterior estimation. In: 2013 IEEE international conference on computer vision (ICCV), pp. 2296–2303. IEEEGoogle Scholar
  12. 12.
    Jang SI, Choi K, Toh KA, Teoh ABJ, Kim J (2015) Object tracking based on an online learning network with total error rate minimization. Pattern Recognit 48(1):126–139CrossRefzbMATHGoogle Scholar
  13. 13.
    Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), pp. 49–56. IEEEGoogle Scholar
  14. 14.
    Kwon J, Lee KM (2010) Visual tracking decomposition. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR), pp 1269–1276. IEEEGoogle Scholar
  15. 15.
    Kwon J, Lee KM (2011) Tracking by sampling trackers. In: 2011 IEEE international conference on, Computer vision (ICCV), pp 1195–1202. IEEEGoogle Scholar
  16. 16.
    Liu L, Liu YJ, Li DJ (2013) Intelligence computation based on adaptive tracking design for a class of non-linear discrete-time systems. Neural Comput Appl 23(5):1351–1357CrossRefGoogle Scholar
  17. 17.
    Ma C, Liu C, Peng F, Liu J (2016) Multi-feature hashing tracking. Pattern Recognit Lett 69:62–71CrossRefGoogle Scholar
  18. 18.
    Mei X, Ling H (2009) Robust visual tracking using l1 minimization. In: 2009 IEEE 12th international conference on computer vision, pp 1436–1443. IEEEGoogle Scholar
  19. 19.
    Morais E, Ferreira A, Cunha SA, Barros RM, Rocha A, Goldenstein S (2014) A multiple camera methodology for automatic localization and tracking of futsal players. Pattern Recognit. Lett. 39:21–30CrossRefGoogle Scholar
  20. 20.
    Najim K, Ikonen E, Del Moral P (2006) Open-loop regulation and tracking control based on a genealogical decision tree. Neural Comput Appl 15(3–4):339–349CrossRefGoogle Scholar
  21. 21.
    Oppenheim AV, Willsky AS, Nawab SH (1983) Signals and systems, vol 2. Prentice-Hall Englewood Cliffs, NJ 6(7):10Google Scholar
  22. 22.
    Oron S, Bar-Hillel A, Levi D, Avidan S (2012) Locally orderless tracking. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 1940–1947. IEEEGoogle Scholar
  23. 23.
    Pan C, Lai X, Yang SX, Wu M (2015) A bioinspired neural dynamics-based approach to tracking control of autonomous surface vehicles subject to unknown ocean currents. Neural Comput Appl 26(8):1929–1938CrossRefGoogle Scholar
  24. 24.
    Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. IEEE Trans Pattern Anal Mach Intell 11(7):739–742CrossRefGoogle Scholar
  25. 25.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  26. 26.
    Su Y, Zhao Q, Zhao L, Gu D (2014) Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recognit 47(5):1826–1834CrossRefGoogle Scholar
  27. 27.
    Wu J, Su B, Li J, Zhang X, Ai L (2016) Global adaptive neural tracking control of nonlinear mimo systems. Neural Comput Appl 1–13. doi: 10.1007/s00521-016-2268-x
  28. 28.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEE conference on computer vision and pattern recognition (CVPR)Google Scholar
  29. 29.
    Xiao J, Stolkin R, Leonardis A (2014) Multi-target tracking in team-sports videos via multi-level context-conditioned latent behaviour models. In: Proceedings of the British machine vision conference. BMVA PressGoogle Scholar
  30. 30.
    Yi S, He Z, You X, Cheung YM (2015) Single object tracking via robust combination of particle filter and sparse representation. Signal Process 110:178–187CrossRefGoogle Scholar
  31. 31.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. Acm Comput Surv (CSUR) 38(4):13CrossRefGoogle Scholar
  32. 32.
    Yu G, Hu Z, Lu H, Li W (2011) Robust object tracking with occlusion handle. Neural Comput Appl 20(7):1027–1034CrossRefGoogle Scholar
  33. 33.
    Yu Q, Dinh TB, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Computer Vision—ECCV 2008, pp 678–691. SpringerGoogle Scholar
  34. 34.
    Yu T, Wu Y (2004) Collaborative tracking of multiple targets. In: Computer vision and pattern recognition, 2004. CVPR 2004. In: Proceedings of the 2004 IEEE computer society conference on, vol 1, pp I–834. IEEEGoogle Scholar
  35. 35.
    Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recognit 46(1):397–411MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang K, Zhang L, Liu Q, Zhang D, Yang MH (2014) Fast visual tracking via dense spatio-temporal context learning. In: Computer vision—ECCV 2014, pp 127–141. SpringerGoogle Scholar
  37. 37.
    Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Computer vision–ECCV 2012, pp. 864–877. SpringerGoogle Scholar
  38. 38.
    Zhang T, Jia K, Xu C, Ma Y, Ahuja N (2014) Partial occlusion handling for visual tracking via robust part matching. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp 1258–1265. IEEEGoogle Scholar
  39. 39.
    Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 1838–1845. IEEEGoogle Scholar
  40. 40.
    Zhou H, Fei M, Sadka A, Zhang Y, Li X (2014) Adaptive fusion of particle filtering and spatio-temporal motion energy for human tracking. Pattern Recognit 47(11):3552–3567CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  1. 1.Fuzhou UniversityFuzhouChina
  2. 2.University of TechnologySydneyAustralia

Personalised recommendations