Advertisement

Neural Computing and Applications

, Volume 28, Supplement 1, pp 1083–1100 | Cite as

Kernel-based models for prediction of cement compressive strength

  • Mohit Verma
  • A. Thirumalaiselvi
  • J. Rajasankar
Original Article

Abstract

This paper employs three different kernel-based models—support vector regression (SVR), relevance vector machine (RVM) and Gaussian process regression (GPR)—for the prediction of cement compressive strength. The input variables for the model are taken as C3S (%), SO3 (%), Alkali (%) and Blaine (cm2/g), while the output is 28-day cement compressive strength (N/mm2) of the cement. The hyperparameters of the SVR are obtained using two different metaheuristic optimization algorithms—particle swarm optimization (PSO) and symbiotic organism search (SOS). Trial-and-error-based approach is used for arriving at the hyperparameters of RVM and GPR. The compressive strength predicted using different kernel-based models is also compared with that obtained from ANN and fuzzy logic models reported in the literature. The performance of the different kernel-based models is benchmarked using six different error indices and residual analysis. The performance of the kernel-based models is found to be at par with ANN. The better generalization capability and excellent empirical performance of the kernel-based models overcome the disadvantages associated with ANN and provide a good tool for the prediction of the cement compressive strength.

Keywords

Support vector regression Relevance vector machine Gaussian process regression Cement compressive strength Particle swarm optimization Symbiotic organism search 

Notes

Acknowledgments

Authors would also like to thank and acknowledge the help received from their colleagues of Shock and Vibration Group, CSIR-SERC and Mr. Prabhat Ranjan Prem, Scientist, AML, CSIR - SERC. This paper is being published with the kind permission of the Director, CSIR-SERC, Chennai.

References

  1. 1.
    Osbaeck B, Johansen V (1989) Particle size distribution and rate of strength development of Portland cement. J Am Ceram Soc 72(2):197–201CrossRefGoogle Scholar
  2. 2.
    Celik IB (2009) The effects of particle size distribution and surface area upon cement strength development. Powder Technol 188(3):272–276CrossRefGoogle Scholar
  3. 3.
    Chen JJ, Kwan AKH (2012) Superfine cement for improving packing density, rheology and strength of cement paste. Cem Concr Compos 34(1):1–10CrossRefGoogle Scholar
  4. 4.
    Osbaeck B (1979) The influence of Alkalis on the strength properties of Portland cement. ZKG 32:72–77Google Scholar
  5. 5.
    Mechling J-M, Lecomte A, Diliberto C (2009) Relation between cement composition and compressive strength of pure pastes. Cem Concr Compos 31(4):255–262CrossRefGoogle Scholar
  6. 6.
    De Siquera Tango CE (1998) An extrapolation method for compressive strength prediction of hydraulic cement products. Cem Concr Res 28(7):969–983CrossRefGoogle Scholar
  7. 7.
    Svinning K, Høskuldsson A, Justnes H (2010) Prediction of potential compressive strength of Portland clinker from its mineralogy. Cem Concr Compos 32(4):300–311CrossRefGoogle Scholar
  8. 8.
    Tsivilis S, Chaniotakis E, Badogiannisa E, Pahoulasa G, Iliasa A (1999) A study on the parameters affecting the properties of Portland limestone cements. Cem Concr Compos 21(2):107–116CrossRefGoogle Scholar
  9. 9.
    Motamedi S, Shamshirband S, Hashim R, Petković D, Roy C (2015) Estimating unconfined compressive strength of cockle shell–cement–sand mixtures using soft computing methodologies. Eng Struct 98:49–58CrossRefGoogle Scholar
  10. 10.
    Motamedi S, Shamshirband S, Petković D, Hashim R (2015) Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA–sand–cement mixture. Powder Technol 278:278–285CrossRefGoogle Scholar
  11. 11.
    Sebastia M, Olmo IF, Irabien A (2003) Neural network prediction of unconfined compressive strength of coal fly ash–cement mixtures. Cem Concr Res 33:1137–1146CrossRefGoogle Scholar
  12. 12.
    Fa-Liang G (1997) A new way of predicting cement strength-fuzzy logic. Cem Concr Res 27:883–888CrossRefGoogle Scholar
  13. 13.
    Akkurt S, Ozdemir S, Tayfur G, Akyol B (2003) The use of GA-ANNs in the modelling of compressive strength of cement mortar. Cem Concr Res 33:973–979CrossRefGoogle Scholar
  14. 14.
    Akkurt S, Tayfur G, Can S (2004) Fuzzy logic model for the prediction of cement compressive strength. Cem Concr Res 34:1429–1433CrossRefGoogle Scholar
  15. 15.
    Zhang J, Sato T, Iai S (2006) Support vector regression for on-line health monitoring of large-scale structures. Struct Saf 28(4):392–406CrossRefGoogle Scholar
  16. 16.
    Chen BT, Chang T-P, Shih J-Y, Wa J-J (2008) Estimation of exposed temperature for fire-damaged concrete using support vector machine. Comput Mater Sci 44:913–920CrossRefGoogle Scholar
  17. 17.
    Lee JJ, Kim DK, Chang SK, Lee JH (2007) Application of support vector regression for the prediction of concrete strength. Comput Concr 4(4):299–316CrossRefGoogle Scholar
  18. 18.
    Maity R, Bhagwat PP, Bhatnagar A (2010) Potential of support vector regression for prediction of monthly stream flow using endogenous property. Hydrol Process 24(7):917–923CrossRefGoogle Scholar
  19. 19.
    Camps-Valls G, Gómez-Chova L, Muñoz-Marí J, Vila-Francés J, Amorós-López J, Calpe-Maravilla J (2006) Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens Environ 105(1):23–33CrossRefGoogle Scholar
  20. 20.
    Lázaro-Gredilla M, Titsias MK, Verrelst J, Camps-Valls G (2014) Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geosci Remote Sens Lett 11(4):838–842CrossRefGoogle Scholar
  21. 21.
    Yuvaraj P, Murthy AR, Iyer NR, Sekar SK, Samui P (2013) Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams. Eng Fract Mech 98:29–43CrossRefGoogle Scholar
  22. 22.
    Vapnik V (2000) The nature of statistical learning theory. Springer, New YorkCrossRefzbMATHGoogle Scholar
  23. 23.
    Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Williams CKI (1998) Prediction with Gaussian processes: from linear regression and beyond. In: Jordan MI (ed) Learning and inference in graphical models. Kluwer Academic Press, Dordrecht, pp 599–621CrossRefGoogle Scholar
  26. 26.
    Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, New York, pp 303–308Google Scholar
  27. 27.
    Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112CrossRefGoogle Scholar
  28. 28.
    Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Network 10(5):988–999CrossRefGoogle Scholar
  29. 29.
    Owolabi TO, Faiz M, Olatunji SO, Popoola IK (2016) Computational intelligence method of determining the energy band gap of doped ZnO semiconductor. Mater Des 101:277–284CrossRefGoogle Scholar
  30. 30.
    Bermolen P, Rossi D (2009) Support vector regression for link load prediction. Comput Netw 53(2):191–201CrossRefGoogle Scholar
  31. 31.
    Fattahi H, Gholami A, Amiribakhtiar MS, Moradi S (2015) Estimation of asphaltene precipitation from titration data: a hybrid support vector regression with harmony search. Neural Comput Appl 26(4):789–798CrossRefGoogle Scholar
  32. 32.
    Hasanipanah M, Shahnazar A, Amnieh HB, Armaghani DJ (2016) Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model. Eng Comput. doi: 10.1007/s00366-016-0453-2 Google Scholar
  33. 33.
    Huang CL, Tsai CY (2009) A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst Appl 36(2):1529–1539MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lu CJ (2013) Hybridizing nonlinear independent component analysis and support vector regression with particle swarm optimization for stock index forecasting. Neural Comput Appl 23(7–8):2417–2427CrossRefGoogle Scholar
  35. 35.
    Gunn SR (1998) Support vector machines for classification and regression. Technical report, Image Speech and Intelligent Systems Research Group, University of SouthamptonGoogle Scholar
  36. 36.
    European Committee for Standardization (CEN), Methods of testing cement part 1: determination of strength. European Standard EN 196-1Google Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  • Mohit Verma
    • 1
    • 2
  • A. Thirumalaiselvi
    • 1
    • 2
  • J. Rajasankar
    • 1
    • 2
  1. 1.CSIR – Structural Engineering Research CentreChennaiIndia
  2. 2.Academy of Scientific and Innovative ResearchChennaiIndia

Personalised recommendations