Advertisement

Neural Computing and Applications

, Volume 28, Issue 9, pp 2489–2500 | Cite as

A new ASM framework for left ventricle segmentation exploring slice variability in cardiac MRI volumes

  • Carlos Santiago
  • Jacinto C. Nascimento
  • Jorge S. Marques
IBPRIA 2015
  • 233 Downloads

Abstract

Three-dimensional active shape models use a set of annotated volumes to learn a shape model. Using unique landmarks to define the surface models in the training set, the shape model is able to learn the expected shape and variation modes of the segmentation. This information is then used during the segmentation process to impose shape constraints. A relevant problem in which these models are used is the segmentation of the left ventricle in 3D MRI volumes. In this problem, the annotations correspond to a set of contours that define the LV border at each volume slice. However, each volume has a different number of slices (thus, a different number of landmarks), which makes model learning difficult. Furthermore, motion artifacts and the large distance between slices make interpolation of voxel intensities a bad choice when applying the learned model to a test volume. These two problems raise the following questions: (1) how can we learn a shape model from volumes with a variable number of slices? and (2) how can we segment a test volume without interpolating voxel intensities between slices? This paper provides an answer to these questions by proposing a framework to deal with the variable number of slices in the training set and a resampling strategy for the test phase to segment the left ventricle in cardiac MRI volumes with any number of slices. The proposed method was evaluated on a public database with 660 volumes of both healthy and diseased patients, with promising results.

Keywords

Active shape model 3D segmentation Cardiac MRI Interpolation 

Notes

Acknowledgments

This work was supported by FCT [UID/EEA/50009/2013] and [SFRH/BD/87347/2012].

References

  1. 1.
    Abi-Nahed J, Jolly MP, Yang GZ (2006) Robust active shape models: a robust, generic and simple automatic segmentation tool. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention–MICCAI 2006. Springer, Berlin, Heidelberg, pp 1–8 Google Scholar
  2. 2.
    Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357CrossRefGoogle Scholar
  3. 3.
    Billet F, Sermesant M, Delingette H, Ayache N (2009) Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 376–385Google Scholar
  4. 4.
    Blake A, Isard M (1998) Image processing techniques for feature location. In: Active contours. Springer, London, pp 97–113Google Scholar
  5. 5.
    Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JHC (2002) Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans Med Imaging 21(11):1374–1383CrossRefGoogle Scholar
  6. 6.
    Carneiro G, Georgescu B, Good S, Comaniciu D (2008) Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans Med Imaging 27(9):1342–1355CrossRefGoogle Scholar
  7. 7.
    Carneiro G, Nascimento JC (2010) Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures. In: Confernce computer vision and pattern recognition (CVPR)Google Scholar
  8. 8.
    Chen T, Babb J, Kellman P, Axel L, Kim D (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27(8):1084–1094CrossRefGoogle Scholar
  9. 9.
    Cootes T, Beeston C, Edwards G, Taylor C (1999) A unified framework for atlas matching using active appearance models. In: Kuba A, Šáamal M, Todd-Pokropek A (eds) Information processing in medical imaging. Springer, Berlin, Heidelberg, pp 322–333 Google Scholar
  10. 10.
    Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59CrossRefGoogle Scholar
  11. 11.
    Cousty J, Najman L, Couprie M, Clément-Guinaudeau S, Goissen T, Garot J (2007) Automated, accurate and fast segmentation of 4D cardiac MR images. In: Sachse FB, Seemann G (eds) Functional imaging and modeling of the heart. Springer, Berlin, Heidelberg, pp 474–483Google Scholar
  12. 12.
    Cremers D (2006) Dynamical statistical shape priors for level set-based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–1273CrossRefGoogle Scholar
  13. 13.
    Cremers D, Osher S, Soatto S (2006) Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int J Comput Vis 69(3):335–351CrossRefGoogle Scholar
  14. 14.
    Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRefGoogle Scholar
  15. 15.
    Georgescu B, Zhou XS, Comaniciu D, Gupta A (2005) Database-guided segmentation of anatomical structures with complex appearance. In: Confernce computer vision and pattern recognition (CVPR)Google Scholar
  16. 16.
    Gopal S, Terzopoulos D (2014) A unified statistical/deterministic deformable model for LV segmentation ins cardiac MRI. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds) Statistical atlases and computational models of the heart. Imaging and modelling challenges. Springer, Berlin, Heidelberg, pp 180–187Google Scholar
  17. 17.
    Grosgeorge D, Petitjean C, Caudron J, Fares J, Dacher JN (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6(5):573–581CrossRefGoogle Scholar
  18. 18.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563CrossRefGoogle Scholar
  19. 19.
    Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67zbMATHCrossRefGoogle Scholar
  20. 20.
    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, Ho VB, Jerosch-Herold M, Kramer CM, Manning WJ et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2614–2662CrossRefGoogle Scholar
  21. 21.
    Jolly M (2009) Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J Cardiac MR Left Ventricle Segm Chall 4 Google Scholar
  22. 22.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331zbMATHCrossRefGoogle Scholar
  23. 23.
    Kaus MR, Jv Berg, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254CrossRefGoogle Scholar
  24. 24.
    Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265CrossRefGoogle Scholar
  25. 25.
    Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images. Med Image Anal 8(3):371–386CrossRefGoogle Scholar
  26. 26.
    Lynch M, Ghita O, Whelan PF (2008) Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans Med Imaging 27(2):195–203CrossRefGoogle Scholar
  27. 27.
    Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175CrossRefGoogle Scholar
  28. 28.
    Medrano-Gracia P, Cowan BR, Bluemke DA, Finn JP, Lima JA, Suinesiaputra A, Young AA (2013) Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the Heart, vol 7945., Lecture Notes in Computer ScienceSpringer, Berlin Heidelberg, pp 433–441CrossRefGoogle Scholar
  29. 29.
    Mitchell S, Lelieveldt B, van der Geest R, Bosch H, Reiber J, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423CrossRefGoogle Scholar
  30. 30.
    Mitchell SC, Bosch JG, Lelieveldt BP, van der Geest RJ, Reiber JH, Sonka M (2002) 3-D active appearance models: segmentation of cardiac MR and ultrasound images. IEEE Trans Med Imaging 21(9):1167–1178CrossRefGoogle Scholar
  31. 31.
    Nascimento JC, Marques JS (2008) Robust shape tracking with multiple models in ultrasound images. IEEE Trans Image Process 17(3):392–406MathSciNetCrossRefGoogle Scholar
  32. 32.
    O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3D time left ventricular segmentation technique. IEEE Trans Med Imaging 30(2):461–474CrossRefGoogle Scholar
  33. 33.
    Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776CrossRefGoogle Scholar
  34. 34.
    Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247zbMATHCrossRefGoogle Scholar
  35. 35.
    Petitjean C, Dacher J (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184CrossRefGoogle Scholar
  36. 36.
    Rogers M, Graham J (2006) Robust active shape model search. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer vision–ECCV 2002. Springer, Berlin, Heidelberg, pp 517–530Google Scholar
  37. 37.
    Santiago C, Nascimento J, Marques J (2015) 2D Segmentation using a robust active shape model with the EM algorithm. IEEE Trans Image Process 24(8):2592–2601. doi: 10.1109/TIP.2015.2424311 CrossRefGoogle Scholar
  38. 38.
    Santiago C, Nascimento JC, Marques JS (2013) Performance evaluation of point matching algorithms for left ventricle motion analysis in MRI. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, pp 4398–4401Google Scholar
  39. 39.
    Santiago C, Nascimento JC, Marques JS (2015) Automatic 3-D segmentation of endocardial border of the left ventricle from ultrasound images. IEEE J Biomed Health Inform 19(1):339–348. doi: 10.1109/JBHI.2014.2308424 CrossRefGoogle Scholar
  40. 40.
    Santiago C, Nascimento JC, Marques JS (2015) Robust 3D active shape model for the segmentation of the left ventricle in MRI. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis—IbPRIA’15. Springer, Switzerland, pp 283–290Google Scholar
  41. 41.
    Sonka M, Zhang X, Siebes M, Bissing M, Dejong S, Collins S, Mckay C (1995) Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 14:719–732CrossRefGoogle Scholar
  42. 42.
    Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24(1):25–35CrossRefGoogle Scholar
  43. 43.
    Tzimiropoulos G, Pantic M (2013) Optimization problems for fast aam fitting in-the-wild. In: Proceedings of the IEEE international conference on computer vision. pp 593–600Google Scholar
  44. 44.
    Uzunbas MG, Zhang S, Pohl KM, Metaxas D, Axel L (2012) Segmentation of myocardium using deformable regions and graph cuts. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, pp 254–257Google Scholar
  45. 45.
    Weng J, Singh A, Chiu M (1997) Learning-based ventricle detection from cardiac mr and ct images. IEEE Trans Med Imaging 16(4):378–391CrossRefGoogle Scholar
  46. 46.
    Zhang L, Geiser E (1984) An effective algorithm for extracting serial endocardial borders from 2-D echocardiograms. IEEE Trans Biomed Eng BME–31:441–447CrossRefGoogle Scholar
  47. 47.
    Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681CrossRefGoogle Scholar
  48. 48.
    Zhou XS, Comaniciu D, Gupta A (2005) An information fusion framework for robust shape tracking. IEEE Trans Pattern Anal Mach Intell 27(1):115–129CrossRefGoogle Scholar
  49. 49.
    Zhuang X, Hawkes D, Crum W, Boubertakh R, Uribe S, Atkinson D, Batchelor P, Schaeffter T, Razavi R, Hill D (2008) Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Reinhardt JM, Pluim JPW (eds) Medical imaging. International Society for Optics and Photonics, SPIE, pp 691408Google Scholar
  50. 50.
    Zhuang X, Rhode KS, Razavi RS, Hawkes DJ, Ourselin S (2010) A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans Med Imaging 29(9):1612–1625CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  • Carlos Santiago
    • 1
  • Jacinto C. Nascimento
    • 1
  • Jorge S. Marques
    • 1
  1. 1.Instituto Superior TécnicoLisbonPortugal

Personalised recommendations