Neural Computing and Applications

, Volume 28, Issue 9, pp 2795–2808 | Cite as

Optimal feature selection using distance-based discrete firefly algorithm with mutual information criterion

  • Long ZhangEmail author
  • Linlin Shan
  • Jianhua Wang
Original Article


In this paper, we investigate feature subset selection problem by a new self-adaptive firefly algorithm (FA), which is denoted as DbFAFS. In classical FA, it uses constant control parameters to solve different problems, which results in the premature of FA and the fireflies to be trapped in local regions without potential ability to explore new search space. To conquer the drawbacks of FA, we introduce two novel parameter selection strategies involving the dynamical regulation of the light absorption coefficient and the randomization control parameter. Additionally, as an important issue of feature subset selection problem, the objective function has a great effect on the selection of features. In this paper, we propose a criterion based on mutual information, and the criterion can not only measure the correlation between two features selected by a firefly but also determine the emendation of features among the achieved feature subset. The proposed approach is compared with differential evolution, genetic algorithm, and two versions of particle swarm optimization algorithm on several benchmark datasets. The results demonstrate that the proposed DbFAFS is efficient and competitive in both classification accuracy and computational performance.


Feature selection Firefly algorithm Mutual information Adaptive parameter 



This work was supported by the Natural Science Foundation of Heilongjiang Province of China (F201321), the Research and Development Program of Application Technology of Heilongjiang Province (GZ13A003), and the Scientific Research Fund of Heilongjiang Provincial Education Department (12541z007).

Supplementary material

521_2016_2204_MOESM1_ESM.docx (213 kb)
Supplementary material 1 (docx 213 KB)


  1. 1.
    Sebban M, Nock R (2002) A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recogn 35(4):835–846CrossRefzbMATHGoogle Scholar
  2. 2.
    Jain A, Srivastava S, Singh S, Srivastava L (2013) Bacteria foraging optimization based bidding strategy under transmission congestion. IEEE Syst J. doi: 10.1109/JSYST.2013.2258229 Google Scholar
  3. 3.
    Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1–2):155–176MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lee C, Lee GG (2006) Information gain and divergence-based feature selection for machine learning-based text categorization. Inf Process Manag 42(1):155–165CrossRefGoogle Scholar
  5. 5.
    Fernández-García N, Medina-Carnicer R, Carmona-Poyato A, Madrid-Cuevas F, Prieto-Villegas M (2004) Characterization of empirical discrepancy evaluation measures. Pattern Recogn Lett 25(1):35–47CrossRefGoogle Scholar
  6. 6.
    Sotoca JM, Pla F (2010) Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recogn 43(6):2068–2081CrossRefzbMATHGoogle Scholar
  7. 7.
    Cover TM, Van Campenhout JM (1977) On the possible orderings in the measurement selection problem. IEEE Trans Syst Man Cybern 7(9):657–661MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  9. 9.
    Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell 2(1):53–58Google Scholar
  10. 10.
    Firpi H, Goodman E (2004) Swarmed feature selection. In: Proceedings of international symposium on information theory, 2004. ISIT 2004, pp 112–118Google Scholar
  11. 11.
    Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications, SAGA 2009, vol 5792, pp 169–178Google Scholar
  12. 12.
    Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 13(2):175–184CrossRefGoogle Scholar
  13. 13.
    Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958CrossRefGoogle Scholar
  14. 14.
    Fister I, Fister Jr I, Yang X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46CrossRefGoogle Scholar
  15. 15.
    Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84CrossRefGoogle Scholar
  16. 16.
    Szymon l, Stawomir Z (2009) Firefly algorithm for continuous constrained optimization tasks. In: Computational collective intelligence. Semantic web, social networks and multiagent systems. Springer, pp 97–106Google Scholar
  17. 17.
    Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186CrossRefGoogle Scholar
  18. 18.
    Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evol Comput 1(3):164–171CrossRefGoogle Scholar
  19. 19.
    Fister I Jr, Yang X-S, Fister I, Brest J (2012) Memetic firefly algorithm for combinatorial optimization. arXiv preprint arXiv:1204.5165
  20. 20.
    Horng M-H (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39(1):1078–1091CrossRefGoogle Scholar
  21. 21.
    Fister I, Yang XS, Brest J, Fister I Jr (2013) Memetic self-adaptive firefly algorithm. In: Yang XS, Xiao RZC, Gandomi AH, Karamanoglu M (eds) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, Amsterdam, pp 73–102Google Scholar
  22. 22.
    Gálvez A, Iglesias A (2014) New memetic self-adaptive firefly algorithm for continuous optimization. Int J Bio-Inspired Comput. arXiv:1204.5165
  23. 23.
    Gálvez A, Iglesias A (2013) Firefly algorithm for polynomial Bézier surface parameterization. J Appl Math 2013:9, Article ID 237894. doi: 10.1155/2013/237984
  24. 24.
    Bacanin N, Tuba M (2014) Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. Sci World J 2014:16, Article ID 721521. doi: 10.1155/2014/721521
  25. 25.
    Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Coelho LDS, de Andrade Bernert DL, Mariani VC (2011) A chaotic firefly algorithm applied to reliability redundancy optimization. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 517–521Google Scholar
  27. 27.
    Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336CrossRefGoogle Scholar
  28. 28.
    Sayadi MK, Hafezalkotob A, Naini SGJ (2013) Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. J Manuf Syst 32(1):78–84. doi: 10.1016/j.jmsy.2012.06.004 CrossRefGoogle Scholar
  29. 29.
    Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on systems, man, and cybernetics, 1997. Computational cybernetics and simulation, vol 5, pp 4104–4108Google Scholar
  30. 30.
    Cover TM, Thomas JA (2006) Elements of information theory (Wiley series in telecommunications and signal processing). Wiley-Interscience, LondonGoogle Scholar
  31. 31.
    Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550CrossRefGoogle Scholar
  32. 32.
    Kwak N, Choi CH (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1):143–159CrossRefGoogle Scholar
  33. 33.
    Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248CrossRefzbMATHGoogle Scholar
  34. 34.
    Tarasewich P, McMullen PR (2002) Swarm intelligence: power in numbers. Commun ACM 45(8):62–67CrossRefGoogle Scholar
  35. 35.
    Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: IEEE symposium on swarm intelligence, pp 120–127Google Scholar
  36. 36.
    Omran M (2012) Standard particle swarm optimisationGoogle Scholar
  37. 37.
    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 210–214Google Scholar
  38. 38.
    Leu MS, Yeh MF (2012) Grey particle swarm optimization. Appl Soft Comput 12(9):2985–2996CrossRefGoogle Scholar
  39. 39.
    Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32(1):29–38CrossRefzbMATHGoogle Scholar
  40. 40.
    Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526CrossRefGoogle Scholar
  41. 41.
    Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Syst J 8(3):910–920CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  1. 1.College of Computer Science and Information EngineeringHarbin Normal UniversityHarbinChina
  2. 2.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.School of ArtHeilongjiang UniversityHarbinChina

Personalised recommendations