Neural Computing and Applications

, Volume 28, Issue 8, pp 2029–2040 | Cite as

Blood type classification using computer vision and machine learning

  • Ana Ferraz
  • José Henrique Brito
  • Vítor Carvalho
  • José MachadoEmail author
Original Article


In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.


Blood types Pre-transfusion tests Plate test Image processing Machine learning 



Authors of this paper want to thank Portuguese Foundation for Science and Technology (FCT) for funding through the PhD scholarship SFRH/BD/81094/2011. This work is funded also by FEDER funds through the “Programa Operacional Factores de Competitividade—COMPETE” and by national funds by FCTFundação para a Ciência e a Tecnologia, project reference PEst-UID/CEC/00319/2013.

Compliance with ethical standards

Conflict of interest

The authors declare that they have not conflict of interest.


  1. 1.
    Roback JD, Grossman BJ, Harris T, Hillyer CD (2011) Technical manual, 17th edn. American Association of Blood BanksGoogle Scholar
  2. 2.
    Hammering DM (2012) Modern blood banking and transfusion practices, 6th edn. F.A. Davis CompanyGoogle Scholar
  3. 3.
    Rod SR, Tate P, Trent DS (2005) Anatomia and fisiologia, 6th edn. Lusociência, LouresGoogle Scholar
  4. 4.
    Hoffbrand VA, Pettit EJ, Moss HAP (2004) Fundamentos em Hematologia, 4a Edição. Artmed, Porto AlegreGoogle Scholar
  5. 5.
    Caquet R (2004) Guia Prático Climepsi de Análises Clínicas, 1st ed. Climepsi EditoresGoogle Scholar
  6. 6.
    Blood Group Terminology (1935) ISBT—international society of blood transfusion.
  7. 7.
    U.S. Congress, Office of Technology Assessment, OTA-H-260 (1985) Blood policy and technology. Library of Congress Catalog Card Number 85-601151. U.S. Government Printing Office, Washington, DCGoogle Scholar
  8. 8.
    Sturgeon P (2001) Automation: its introduction to the field of blood group serology. Immunohematology 17(4):100–105Google Scholar
  9. 9.
    Coakley AW (1981) Handbook of automated analysis. Mercel Dekker, New YorkGoogle Scholar
  10. 10.
    Ewing GW (1997) Analytical instrumentation handbook, 2nd edn. Marcel Dekker, New York, p 152Google Scholar
  11. 11.
  12. 12.
    Garretta M, Gener J, Muller A, Matte C, Moullec J (2000) The groupamatic system for routine immunohematology. Transfusion 15:422–431CrossRefGoogle Scholar
  13. 13.
    Zaccarelli GD, Monti G, Malaguti J, Marchesini D, Figliola F, Cagliari G, Basile C (2000) Esperienza di automazione nella determinazione dei gruppi sanguigni. La Trasfusione del Sangue 45:28–31Google Scholar
  14. 14.
  15. 15.
    Serodia-TPPA Auto (For In Vitro Diagnostic Use).
  16. 16.
  17. 17.
  18. 18.
    Wittmann G, Frank J, Schram W, Spannagl M (2007) Automation and data processing with the Immucor Galileo® System in a University Blood Bank. Transfus Med Hemother 34:347–352CrossRefGoogle Scholar
  19. 19.
    Dada A, Beck D, Schmitz G (2007) Automation and data processing in blood banking using the Ortho AutoVue® Innova System. Transfus Med Hemother 34:341–346CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Shin SY, Kwon KC, Koo SH, Park JW, Ko CS, Song JH, Sung JY (2008) Evaluation of two automated instruments for pre-transfusion testing: AutoVueInnova and Techno TwinStation. Korean J Lab Med 3:214–220CrossRefGoogle Scholar
  22. 22.
    Roback JD, Combs MR, Grossman BJ, Hillyer CD (2008) Technical manual. AABB, MarylandGoogle Scholar
  23. 23.
    Murphy MM, Pamphilon DH (2009) Practical transfusion medicine, 3rd edn. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  24. 24.
    Cressiers/Morat (2008) Datasheet of Diamed Diaclon Anti-A, Diaclon Anti-B, Diaclon Anti-AB.
  25. 25.
    Cressiers/Morat Datasheet of Diamed: Diamed-MP Test. Bio-Rad Laboratories, Inc.
  26. 26.
    Cressier M (2008) Datasheet of diamed-ID micro typing system, MTS gel cardGoogle Scholar
  27. 27.
  28. 28.
    Costa A Autodesk Inventor 2013 - Curso Completo. FCAGoogle Scholar
  29. 29.
    Ferraz A, Carvalho V, Soares F (2013) A Prototype for blood typing based on image processing. In: SensorDevices 2013: the fourth international conference on sensor device technologies and applications, 2013Google Scholar
  30. 30.
  31. 31.
  32. 32.
    Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049–1075CrossRefGoogle Scholar
  33. 33.
    Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71–86CrossRefGoogle Scholar
  34. 34.
    Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004CrossRefzbMATHGoogle Scholar
  35. 35.
    Boykov YY, Jolly M-P (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings. eighth IEEE international conference on computer vision, 2001. ICCV 2001, pp 105–112Google Scholar
  36. 36.
    Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy–detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243CrossRefGoogle Scholar
  37. 37.
    Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahya RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRefGoogle Scholar
  38. 38.
    Ferraz A, Carvalho V, Brandão P (2010) Automatic determination of human blood types using image processing techniques. In: BIODEVICES 2010 international conference on biomedical electronics and devicesGoogle Scholar
  39. 39.
    Ferraz A, Carvalho V, Soares F, Leão CP (2011) Characterization of blood samples using image processing techniques. Sens Actuators A Phys 172(1):308–314CrossRefGoogle Scholar
  40. 40.
    Moreira V, Ferraz A, Carvalho V, Soares F, Machado J (2012) Design of a mechatronic system for human blood typing in emergency situations. In: IEEE international conference on emerging technologies and factory automation, ETFAGoogle Scholar
  41. 41.
    Bezerra K, Ferraz A, Carvalho V, Machado J, Matos J, Soares F (2012) Advanced design of a mechatronic system for human blood typing. Romanian Rev Precis Mech Opt Mechatron 41:144–150Google Scholar
  42. 42.
    Dalall N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Conference on computer vision and pattern recognition (CVPR), vol 1, 2005, pp 886–893Google Scholar
  43. 43.
    Pauker SG, Kassirer JP (1975) Therapeutic decision making: a cost-benefit analysis. N Engl J Med 293(5):216–221CrossRefGoogle Scholar
  44. 44.
    Lin R-H (2009) An intelligent model for liver disease diagnosis. Artif Intell Med 47(1):53–62CrossRefGoogle Scholar
  45. 45.
    Sheppard JW, Kaufman MA, Wilmer TJ (2009) IEEE standards for prognostics and health management. Aerosp Electron Syst Mag IEEE 24(9):34–41CrossRefGoogle Scholar
  46. 46.
    Lavrac N (1999) Selected techniques for data mining in medicine. Artif Intell Med 16(1):3–23MathSciNetCrossRefGoogle Scholar
  47. 47.
    Huanga M-J, Chenb M-Y, Show-Chin L (2007) Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis. Expert Syst Appl 32(3):856–867CrossRefGoogle Scholar
  48. 48.
    Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23(1):89–109CrossRefGoogle Scholar
  49. 49.
    Isern D, Sánchez D, Moreno A (2010) Agents applied in health care: a review. Int J Med Inform 79(3):145–166CrossRefGoogle Scholar
  50. 50.
    Rocha M, Cortez P, Neves JM Análise Inteligente de Dados, 1st ed. FCAGoogle Scholar
  51. 51.
    Won Y, Song H-J, Kang TW, Kim J-J, And B-DH, Lee S (2003) Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 3(12):2310–2316CrossRefGoogle Scholar
  52. 52.
    Freitas A, Costa-Pereira A, Brazdil P (2007) Cost-sensitive decision trees applied to medical data. Data Warehous Knowl Discov 4654:303–312Google Scholar
  53. 53.
    Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl Soft Comput 11(1):120–129CrossRefGoogle Scholar
  54. 54.
    Chang C-L, Chen C-H (2009) Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Syst Appl 36(2):4035–4041CrossRefGoogle Scholar
  55. 55.
    Barakat N, Bradley AP, Barakat MNH (2010) Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans Inf Technol Biomed 14(4):1114–1120CrossRefGoogle Scholar
  56. 56.
    Wu T-K, Huang S-C, Meng Y-R (2008) Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with learning disabilities. Expert Syst Appl 34(3):1846–1856CrossRefGoogle Scholar
  57. 57.
    Greer BT, Khan J (2004) Diagnostic classification of cancer using DNA microarrays and artificial intelligence. Appl Bioinform Cancer Detect 1020:46–66Google Scholar
  58. 58.
    Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Process 17(4):694–701CrossRefGoogle Scholar
  59. 59.
    Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240–3247CrossRefGoogle Scholar
  60. 60.
    Widodo A, Yang B-S (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574CrossRefGoogle Scholar
  61. 61.
  62. 62.
    Matlab Software. The MathWorks, Inc.
  63. 63.
    Matlab - Machine Learning. The MathWorks, Inc.
  64. 64.
  65. 65.
  66. 66.
    Hospital Prof. Doutor Fernando Afonseca, EPE.
  67. 67.
    Russel S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Pearson, LondonGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2016

Authors and Affiliations

  • Ana Ferraz
    • 1
    • 2
  • José Henrique Brito
    • 3
  • Vítor Carvalho
    • 1
    • 3
  • José Machado
    • 2
    Email author
  1. 1.R&D ALGORITMI Center, School of EngineeringUniversity of MinhoGuimarãesPortugal
  2. 2.MEtRICs Research Center, School of EngineeringUniversity of MinhoGuimarãesPortugal
  3. 3.IPCA-ESTPolytechnic Institute of Cávado and AveBarcelosPortugal

Personalised recommendations