Neural Computing and Applications

, Volume 26, Issue 8, pp 1905–1917 | Cite as

Spiking neural P systems with structural plasticity

  • Francis George C. Cabarle
  • Henry N. Adorna
  • Mario J. Pérez-Jiménez
  • Tao Song
Original Article

Abstract

Spiking neural P (SNP) systems are a class of parallel, distributed, and nondeterministic computing models inspired by the spiking of biological neurons. In this work, the biological feature known as structural plasticity is introduced in the framework of SNP systems. Structural plasticity refers to synapse creation and deletion, thus changing the synapse graph. The “programming” therefore of a brain-like model, the SNP system with structural plasticity (SNPSP system), is based on how neurons connect to each other. SNPSP systems are also a partial answer to an open question on SNP systems with dynamism only for synapses. For both the accepting and generative modes, we prove that SNPSP systems are universal. Modifying SNPSP systems semantics, we introduce the spike saving mode and prove that universality is maintained. In saving mode, however, a deadlock state can arise, and we prove that reaching such a state is undecidable. Lastly, we provide one technique in order to use structural plasticity to solve a hard problem: a constant time, nondeterministic, and semi-uniform solution to the NP-complete problem Subset Sum.

Keywords

Membrane computing Spiking neural P systems Structural plasticity Computational universality Deadlock Undecidability Subset Sum 

References

  1. 1.
    Alhazov A, Freund R, Oswald M, Slavkovik M (2006) Extended spiking neural P systems. In: Hoogeboom HJ et al (eds) WMC 7, LNCS 4361, pp 123–134Google Scholar
  2. 2.
    Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60:287–305CrossRefGoogle Scholar
  3. 3.
    Cabarle FGC, Adorna H (2013) On structures and behaviors of spiking neural P systems and Petri nets. In: Csuhaj-Varjú E et al (eds) CMC 2012, LNCS 7762, pp 145–160Google Scholar
  4. 4.
    Cabarle FGC, Adorna H, Ibo N (2013) Spiking neural P systems with structural plasticity. In: ACMC2013, Chengdu, China, 4–7 Nov 2013Google Scholar
  5. 5.
    Cavaliere M, Ibarra O, Păun G, Egecioglu O, Ionescu M, Woodworth S (2009) Asynchronous spiking neural P systems. Theor Comput Sci 410:2352–2364MATHCrossRefGoogle Scholar
  6. 6.
    García-Amau M, Pérez D, Rodríguez-Patón A, Sosík P (2009) Spiking neural P systems: stronger normal forms. Int J Unconv Comput 5(5):411–425Google Scholar
  7. 7.
    Gutiérrez-Naranjo MA, Pérez-Jiménez MJ (2009) Hebbian learning from spiking neural P systems view. In: Corne D et al (eds) WMC9, LNCS 5391, pp 217–230Google Scholar
  8. 8.
    Ibarra O, Păun A, Păun G, Rodríguez-Patón A, Sosík P, Woodworth S (2007) Normal forms for spiking neural P systems. Theor Comput Sci 372(2–3):196–217MATHCrossRefGoogle Scholar
  9. 9.
    Ionescu M, Păun Gh, Yokomori T (2006) Spiking neural P systems. Fundam Inform 71(2,3):279–308MATHGoogle Scholar
  10. 10.
    Iordache M (2006) Deadlock and liveness properties of Petri nets. Supervisory control of concurrent systems: a Petri net structural approach. Birkhäuser, BostonGoogle Scholar
  11. 11.
    Ishdorj T-O, Leporati A, Pan L, Zeng X, Zhang X (2010) Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor Comput Sci 411:2345–2358MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Leporati A, Zandron C, Ferretti C, Mauri G (2007) Solving numerical NP-complete problems with spiking neural P systems. In: Eleftherakis et al (eds) WMC8 2007, LNCS 4860, pp 336–352Google Scholar
  13. 13.
    Leporati G, Mauri G, Zandron C, Păun G, Pérez-Jiménez M (2009) Uniform solutions to SAT and subset sum by spiking neural P systems. Nat Comput 8:681–702MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Minsky M (1967) Computation: finite and infinite machines. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  15. 15.
    Pan L, Păun G (2009) Spiking neural P systems with anti-spikes. J Comput Commun Control IV(3):273–282Google Scholar
  16. 16.
    Pan L, Păun G (2010) Spiking neural P systems: an improved normal form. Theor Comput Sci 411(6):906–918MATHCrossRefGoogle Scholar
  17. 17.
    Pan L, Păun Gh, Pérez-Jiménez MJ (2011) Spiking neural P systems with neuron division and budding. Sci China Inf Sci 54(8):1596–1607MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Pan L, Wang J, Hoogeboom JH (2012) Spiking neural P systems with astrocytes. Neural Comput 24:805–825MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Păun Gh (1999) Computing with membranes. J Comput Syst Sci 61(1):108–143MathSciNetCrossRefGoogle Scholar
  20. 20.
    Păun Gh (2002) Membrane computing: an introduction. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Păun Gh (2007) Spiking neural P systems with astrocyte-like control. J Univ Comput Sci 13(11):1707–1721Google Scholar
  22. 22.
    Păun Gh, Pérez-Jiménez MJ, Rozenberg G (2007) Computing morphisms by spiking neural P systems. Int J Found Comput Sci 8(6):1371–1382CrossRefGoogle Scholar
  23. 23.
    Păun Gh, Pérez-Jiménez MJ (2009) Spiking neural P systems. Recent results, research topics. In: Condon A et al (eds) Algorithmic bioprocesses. Springer, BerlinGoogle Scholar
  24. 24.
    Păun Gh, Rozenberg G, Salomaa A (eds) (2010) The Oxford handbook of membrane computing. OUP, OxfordMATHGoogle Scholar
  25. 25.
    Song T, Pan L, Păun G (2013) Asynchronous spiking neural P systems with local synchronization. Inf Sci 219:197–207MATHCrossRefGoogle Scholar
  26. 26.
    Song T, Pan L, Păun G (2014) Spiking neural P systems with rules on synapses. Theor Comput Sci 529(10):82–95MATHCrossRefGoogle Scholar
  27. 27.
    Turing A (2004) Intelligent machinery. In: Copeland B (ed) Essential turing: seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life: plus the secrets of enigma. OUP, OxfordGoogle Scholar
  28. 28.
    Wang J, Hoogeboom HJ, Pan L (2010) Spiking neural P systems with neuron division. In: Gheorghe M et al (eds) CMC 2010, LNCS 6501, pp 361–376Google Scholar
  29. 29.
    Zhang X, Shuo W, Yunyun N, Linqiang P (2011) Tissue P systems with cell separation: attacking the partition problem. Sci China Inf Sci 54(2):293–304MATHCrossRefGoogle Scholar
  30. 30.
    Zhang X, Zeng X, Luo B, Zhang Z (2012) A uniform solution to the independent set problem through tissue P systems with cell separation. Front Comput Sci 6(4):477–488MATHMathSciNetGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2015

Authors and Affiliations

  • Francis George C. Cabarle
    • 1
  • Henry N. Adorna
    • 1
  • Mario J. Pérez-Jiménez
    • 2
  • Tao Song
    • 3
  1. 1.Algorithms and Complexity Lab, Department of Computer ScienceUniversity of the Philippines DilimanQuezon CityPhilippines
  2. 2.Department of Computer Science and AIUniversity of SevillaSevillaSpain
  3. 3.Key Laboratory of Image Processing and Intelligent Control, School of AutomationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations