Neural Computing and Applications

, Volume 26, Issue 7, pp 1555–1560 | Cite as

Designing precision fuzzy controller for load swing of an overhead crane

  • Leila Ranjbari
  • Amir H. Shirdel
  • M. Aslahi-Shahri
  • S. Anbari
  • A. Ebrahimi
  • M. Darvishi
  • M. Alizadeh
  • Rasoul RahmaniEmail author
  • M. Seyedmahmoudian
Original Article


In this paper, a fuzzy logic controller is designed and proposed for controlling load swing of an overhead crane. To consider a complete model of the plant, the quadratic derivative of state variables is added to the conventional model which causes an extra weighting. The aim of the controller designed is to keep the load angle (ϕ) zero, all the time, which means no physical swinging in the load’s position. The results obtained are compared with the optimal control method, as one of the well-known control techniques, to verify the designed controller. The results show that the designed fuzzy controller is able to dampen the oscillations in the load swing angle and load’s angular velocity, in a reasonable time.


Fuzzy logic controller Load swing Overhead crane 


  1. 1.
    Ko A, Lau HY, Lau T (2004) Artificial immune systems. Springer, Berlin, pp 91–105CrossRefGoogle Scholar
  2. 2.
    Rahmani R, Tayyebi M, Majid M, Hassan MY, Rahman H (2011) IEEE on applied power electronics colloquium (IAPEC), 2011, pp 165–169Google Scholar
  3. 3.
    Rahmani R, Othman MF, Shojaei AA, Yusof R (2014) Static VAR compensator using recurrent neural network. Electr Eng 96(2):109–119CrossRefGoogle Scholar
  4. 4.
    Rahmani R, Yusof R, Seyedmahmoudian M, Mekhilef S (2013) Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123:163–170CrossRefGoogle Scholar
  5. 5.
    Bartolini G, Pisano A, Punta E, Usai E (2003) A survey of applications of second-order sliding mode control to mechanical systems. Int J Control 76(9–10):875–892MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu R, Li S, Chen X (2013) IEEE control conference (CCC), 2013 32nd Chinese, pp 2195–2200Google Scholar
  7. 7.
    Kodani N, Ouchi S, Todaka Y (2003) IEEE SICE 2003 annual conference, vol. 2, pp 1860–1863Google Scholar
  8. 8.
    Wang Z, Surgenor BW (2006) A problem with the LQ control of overhead cranes. J Dyn Syst Meas Control 128(2):436–440CrossRefGoogle Scholar
  9. 9.
    Moon SC, Lee WG, Lee SG (2013) Adaptive sliding mode control of overhead cranes with varying cable length. J Mech Sci Technol 27(3):885–893MathSciNetCrossRefGoogle Scholar
  10. 10.
    Prommaneewat K, Roengruen P, Kongratana V (2007) IEEE international conference on control, automation and systems, 2007. ICCAS’07, pp 1954–1957Google Scholar
  11. 11.
    Trisuwannawat T, Tirasesth K, Iida M, Komine N, Ochiai Y (2000) Derivative state constrained optimal H2 control for oscillatory systems and its application. IEEJ Trans Ind Appl 120(6):775–781CrossRefGoogle Scholar
  12. 12.
    Eltohamy KG, Kuo CY (1998) Nonlinear optimal control of a triple link inverted pendulum with single control input. Int J Control 69(2):239–256MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huang SJ, Huang CL (2000) Control of an inverted pendulum using grey prediction model. IEEE Trans Ind Appl 36(2):452–458CrossRefGoogle Scholar
  14. 14.
    Shojaei A, Othman MF, Rahmani R, Rani M (2011) IEEE fifth UKSim European symposium on computer modeling and simulation (EMS), 2011, pp 83–87Google Scholar
  15. 15.
    Auernig JW, Troger H (1987) Time optimal control of overhead cranes with hoisting of the load. Automatica 23(4):437–447CrossRefzbMATHGoogle Scholar
  16. 16.
    Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rahmani R, Mahmodian M, Mekhilef S, Shojaei A (2012) IEEE student conference on research and development (SCOReD), 2012, pp 109–113. doi: 10.1109/SCOReD.2012.6518621
  18. 18.
    Rahmani R, Seyedmahmoudian M, Mekhilef S, Yusof R (2013) Implementation of fuzzy logic maximum power point tracking controller for photovoltaic system. Am J Appl Sci 10(3):209–218CrossRefGoogle Scholar
  19. 19.
    Rahmani R, Langeroudi N, Yousefi R, Mahdian M, Seyedmahmoudian M (2014) Neural Comput Appl 25(3–4):879. doi: 10.1007/s00521-014-1561-9 CrossRefGoogle Scholar
  20. 20.
    Ustuntac T, Şahin AD (2008) J Wind Eng Ind Aerodyn 96(5):611. doi: 10.1016/j.jweia.2008.02.001
  21. 21.
    Lima F, Kaiser W, da Silva IN, de Oliveira Jr, AA (2014) Appl Soft Comput (0). doi: 10.1016/j.asoc.2014.03.044
  22. 22.
    Mozaffari A, Behzadipour S, Kohani M (2014) Appl Soft Comput 14(Part A0):12. Special issue on hybrid intelligent methods for health technologies. doi: 10.1016/j.asoc.2013.09.023
  23. 23.
    Liu D, Yi J, Zhao D, Wang W (2005) Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15(5):505–522CrossRefGoogle Scholar
  24. 24.
    Precup RE, Filip HI, Rdac MB, Petriu EM, Preitl S, Drago CA (2014) Appl Soft Comput. doi: 10.1016/j.asoc.2014.01.013
  25. 25.
    Benhidjeb A, Gissinger GL (1995) Fuzzy control of an overhead crane performance comparison with classic control. Control Eng Pract 3(12):1687–1696CrossRefGoogle Scholar
  26. 26.
    Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans Syst Man Cybern 20(2):419–435CrossRefzbMATHGoogle Scholar
  27. 27.
    Castro JL (1995) Fuzzy logic controllers are universal approximators. IEEE Trans Syst Man Cybern 25(4):629–635CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2015

Authors and Affiliations

  • Leila Ranjbari
    • 1
  • Amir H. Shirdel
    • 2
  • M. Aslahi-Shahri
    • 3
  • S. Anbari
    • 4
  • A. Ebrahimi
    • 3
  • M. Darvishi
    • 3
  • M. Alizadeh
    • 5
  • Rasoul Rahmani
    • 6
    Email author
  • M. Seyedmahmoudian
    • 7
  1. 1.Department of Mathematical Science, Faculty of ScienceUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  2. 2.Department of Chemical EngineeringAbo Akademi UniversityAboFinland
  3. 3.Faculty of ComputingUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  4. 4.Faculty of Mechanical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  5. 5.Malaysia-Japan International Institute of TechnologyUniversiti Teknologi Malaysia (UTM)Kuala LumpurMalaysia
  6. 6.Centre for Artificial Intelligence & RoboticsUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  7. 7.School of EngineeringDeakin UniversityWaurn PondsAustralia

Personalised recommendations