Neural Computing and Applications

, Volume 26, Issue 5, pp 1257–1263 | Cite as

Evolutionary population dynamics and grey wolf optimizer

  • Shahrzad SaremiEmail author
  • Seyedeh Zahra Mirjalili
  • Seyed Mohammad Mirjalili
Original Article


Evolutionary population dynamics (EPD) deal with the removal of poor individuals in nature. It has been proven that this operator is able to improve the median fitness of the whole population, a very effective and cheap method for improving the performance of meta-heuristics. This paper proposes the use of EPD in the grey wolf optimizer (GWO). In fact, EPD removes the poor search agents of GWO and repositions them around alpha, beta, or delta wolves to enhance exploitation. The GWO is also required to randomly reinitialize its worst search agents around the search space by EPD to promote exploration. The proposed GWO–EPD algorithm is benchmarked on six unimodal and seven multi-modal test functions. The results are compared to the original GWO algorithm for verification. It is demonstrated that the proposed operator is able to significantly improve the performance of the GWO algorithm in terms of exploration, local optima avoidance, exploitation, local search, and convergence rate.


Grey wolf optimizer Optimization Evolutionary algorithms Heuristic 


  1. 1.
    Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering (IKE’03), Las Vegas, NV, USA, 2003, pp 255–261Google Scholar
  2. 2.
    Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111CrossRefGoogle Scholar
  3. 3.
    Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248zbMATHCrossRefGoogle Scholar
  4. 4.
    Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491CrossRefGoogle Scholar
  5. 5.
    Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180CrossRefGoogle Scholar
  6. 6.
    Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184MathSciNetCrossRefGoogle Scholar
  7. 7.
    Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Advances in natural computation. Springer, pp 264–273Google Scholar
  8. 8.
    Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140CrossRefGoogle Scholar
  9. 9.
    Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214
  10. 10.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12:702–713CrossRefGoogle Scholar
  11. 11.
    Abbass HA (2001) MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation, 2001, pp 207–214Google Scholar
  12. 12.
    Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, ChinaGoogle Scholar
  13. 13.
    Roth M (2005) Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks. Ph. D thesis, Cornel UniversityGoogle Scholar
  14. 14.
    Pinto PC, Runkler TA, Sousa JM (2007) Wasp swarm algorithm for dynamic MAX-SAT problems. In: Adaptive and natural computing algorithms. Springer, pp 350–357Google Scholar
  15. 15.
    Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, p 162Google Scholar
  16. 16.
    Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: Advanced intelligent computing theories and applications. With aspects of artificial intelligence. Springer, pp 518–525Google Scholar
  17. 17.
    Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature and biologically inspired computing, 2009. NaBIC 2009, pp 210–214Google Scholar
  18. 18.
    Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: WRI global congress on intelligent systems, 2009. GCIS’09, pp 124–128Google Scholar
  19. 19.
    Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bioinspired Comput 2:78–84CrossRefGoogle Scholar
  20. 20.
    Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204CrossRefGoogle Scholar
  21. 21.
    Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74CrossRefGoogle Scholar
  22. 22.
    Abdel-Kader RF (2011) Hybrid discrete PSO with GA operators for efficient QoS-multicast routing. Ain Shams Eng J 2:21–31CrossRefGoogle Scholar
  23. 23.
    Kao Y-T, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8:849–857CrossRefGoogle Scholar
  24. 24.
    Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 international conference on computer and information application (ICCIA), 2010, pp 374–377Google Scholar
  25. 25.
    Khamsawang S, Wannakarn P, Jiriwibhakorn S (2010) Hybrid PSO-DE for solving the economic dispatch problem with generator constraints. In: 2010 the 2nd international conference on computer and automation engineering (ICCAE), 2010, pp 135–139Google Scholar
  26. 26.
    Shuang B, Chen J, Li Z (2011) Study on hybrid PS-ACO algorithm. Appl Intell 34:64–73CrossRefGoogle Scholar
  27. 27.
    El-Abd M (2011) A hybrid ABC-SPSO algorithm for continuous function optimization. In: 2011 IEEE symposium on swarm intelligence (SIS), 2011, pp 1–6Google Scholar
  28. 28.
    Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Coelho LdS (2008) A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37:1409–1418CrossRefGoogle Scholar
  30. 30.
    Lee Z-J, Su S-F, Chuang C-C, Liu K-H (2008) Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl Soft Comput 8:55–78CrossRefGoogle Scholar
  31. 31.
    Duan H, Yu Y, Zhang X, Shao S (2010) Three-dimension path planning for UCAV using hybrid meta-heuristic ACO–DE algorithm. Simul Model Pract Theory 18:1104–1115CrossRefGoogle Scholar
  32. 32.
    Lewis A, Mostaghim S, Randall (2008) Evolutionary population dynamics and multi-objective optimisation problems. In: Multi-objective optimization in computational intelligence: theory and practice, pp 185–206Google Scholar
  33. 33.
    Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bak P (1997) How nature works. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Boettcher S, Percus AG (1999) Extremal optimization: methods derived from co-evolution. arXiv preprint arXiv:math/9904056
  36. 36.
    Lewis A, Abramson D, Peachey T (2004) An evolutionary programming algorithm for automatic engineering design. In: Parallel processing and applied mathematics. Springer, pp 586–594Google Scholar
  37. 37.
    Randall M, Lewis A (2006) An extended extremal optimisation model for parallel architectures. In: Second IEEE international conference on e-science and grid computing, 2006. e-Science’06, pp 114–114Google Scholar
  38. 38.
    Fogel LJ (1962) Autonomous automata. Ind Res 4:14–19Google Scholar
  39. 39.
    Xie D, Luo Z, Yu F (2009) The computing of the optimal power consumption for semi-track air-cushion vehicle using hybrid generalized extremal optimization. Appl Math Model 33:2831–2844zbMATHCrossRefGoogle Scholar
  40. 40.
    Randall M (2007) Enhancements to extremal optimisation for generalised assignment. In: Progress in artificial life. Springer, pp 369–380Google Scholar
  41. 41.
    Randall M, Hendtlass T, Lewis A (2009) Extremal optimisation for assignment type problems. In: Biologically-inspired optimisation methods. Springer, pp 139–164Google Scholar
  42. 42.
    Gómez-Meneses P, Randall M, Lewis A (2010) A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems. In: 2010 IEEE congress on evolutionary computation (CEC), 2010, pp 1–8Google Scholar
  43. 43.
    Tamura K, Kitakami H, Nakada A (2013) Distributed modified extremal optimization using island model for reducing crossovers in reconciliation graph. Eng Lett 21:81–88Google Scholar
  44. 44.
    Gomez Meneses PS (2012) Extremal optimisation applied to constrained combinatorial multi-objective optimisation problems. Ph. D thesis, Bond UniversityGoogle Scholar
  45. 45.
    Tamura K, Kitakami H, Nakada A (2014) Island-model-based distributed modified extremal optimization for reducing crossovers in reconciliation graph. In: Transactions on engineering technologies. Springer, pp 141–156Google Scholar
  46. 46.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  47. 47.
    Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584CrossRefGoogle Scholar
  48. 48.
    Mirjalili S, Lewis A, Sadiq AS (2014) Autonomous particles groups for particle swarm optimization. Arab J Sci Eng 39(6):4683–4697CrossRefGoogle Scholar
  49. 49.
    Mirjalili S, Mirjalili S, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25:663–681CrossRefGoogle Scholar
  50. 50.
    Mirjalili S, Wang G-G, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435CrossRefGoogle Scholar
  51. 51.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102CrossRefGoogle Scholar
  52. 52.
    Digalakis J, Margaritis K (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Molga M, Smutnicki C (2005) Test functions for optimization needs. In: Test functions for optimization needsGoogle Scholar
  54. 54.
    Yang X-S (2010) Test problems in optimization. arXiv preprint arXiv:1008.0549
  55. 55.
    Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evolut Comput 9:1–14CrossRefGoogle Scholar
  56. 56.
    Saremi S, Mirjalili S, Lewis A (2014) How important is a transfer function in discrete heuristic algorithms. Neural Comput Appl 1–16. doi: 10.1007/s00521-014-1743-5
  57. 57.
    Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097CrossRefGoogle Scholar
  58. 58.
    Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization algorithm. Proc Technol 12:180–185CrossRefGoogle Scholar

Copyright information

© The Natural Computing Applications Forum 2014

Authors and Affiliations

  • Shahrzad Saremi
    • 1
    • 3
    Email author
  • Seyedeh Zahra Mirjalili
    • 2
  • Seyed Mohammad Mirjalili
    • 2
  1. 1.School of Information and Communication TechnologyNathan Campus, Griffith UniversityBrisbaneAustralia
  2. 2.Zharfa Pajohesh System (ZPS) Co.TehranIran
  3. 3.Queensland Institute of Business and TechnologyBrisbaneAustralia

Personalised recommendations