Neural Computing and Applications

, Volume 25, Issue 5, pp 1077–1097 | Cite as

Biogeography-based optimisation with chaos

  • Shahrzad Saremi
  • Seyedali Mirjalili
  • Andrew Lewis
Original Article


The biogeography-based optimisation (BBO) algorithm is a novel evolutionary algorithm inspired by biogeography. Similarly, to other evolutionary algorithms, entrapment in local optima and slow convergence speed are two probable problems it encounters in solving challenging real problems. Due to the novelty of this algorithm, however, there is little in the literature regarding alleviating these two problems. Chaotic maps are one of the best methods to improve the performance of evolutionary algorithms in terms of both local optima avoidance and convergence speed. In this study, we utilise ten chaotic maps to enhance the performance of the BBO algorithm. The chaotic maps are employed to define selection, emigration, and mutation probabilities. The proposed chaotic BBO algorithms are benchmarked on ten test functions. The results demonstrate that the chaotic maps (especially Gauss/mouse map) are able to significantly boost the performance of BBO. In addition, the results show that the combination of chaotic selection and emigration operators results in the highest performance.


Biogeography-based optimisation algorithm BBO Chaos Constrained optimisation Chaotic maps Optimisation 


  1. 1.
    John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge, MAGoogle Scholar
  2. 2.
    Price KV, Storn RM, Lampinen JA (1997) Differential evolution. Springer, BerlinGoogle Scholar
  3. 3.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102CrossRefGoogle Scholar
  4. 4.
    Banzhaf W, Koza J, Ryan C, Spector L, Jacob C (2000) Genetic programming. IEEE Intell Syst Appl 15:74–84CrossRefGoogle Scholar
  5. 5.
    Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guo L, Wang G-G, Gandomi AH, Alavi AH, Duan H (2014) A new improved krill herd algorithm for global numerical optimization. Neurocomputing. doi: 10.1016/j.neucom.2014.01.023
  7. 7.
    Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3-4):853–871. doi: 10.1007/s00521-012-1304-8
  8. 8.
    Wang G-G, Gandomi AH, Alavi AH (2013) A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42:9MathSciNetGoogle Scholar
  9. 9.
    Wang G-G, Gandomi AH, Alavi AH (2013) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model. doi: 10.1016/j.apm.2013.10.052
  10. 10.
    Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370CrossRefGoogle Scholar
  11. 11.
    Wang G-G, Gandomi AH, Alavi AH, Hao G-S (2013) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 1–12. doi: 10.1007/s00521-013-1485-9
  12. 12.
    Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mirjalili S, Lewis A, Mirjalili SM (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 1–19. doi: 10.1007/s00521-014-1585-1
  14. 14.
    Kellert SH (1993) In the wake of chaos: unpredictable order in dynamical systems. University of Chicago Press, ChicagoCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang N, Liu L, Liu L (2001) Genetic algorithm in chaos. OR Trans 5:1–10Google Scholar
  16. 16.
    Yang L-J, Chen T-L (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38:168–172CrossRefGoogle Scholar
  17. 17.
    Jothiprakash V, Arunkumar R (2013) Optimization of hydropower reservoir using evolutionary algorithms coupled with chaos. Water Resour Manag 27(7):1963–1979. doi: 10.1007/s11269-013-0265-8
  18. 18.
    Zhenyu G, Bo C, Min Y, Binggang C (2006) Self-adaptive chaos differential evolution. In: Jiao L, Wang L, Gao X, Liu J, Wu F (eds) Advances in natural computation. Lecture notes in computer science, vol 4221. Springer, Berlin, Heidelberg, pp 972–975Google Scholar
  19. 19.
    Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic Krill herd optimization algorithm. Procedia Technol 12:180–185CrossRefGoogle Scholar
  20. 20.
    Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic Krill herd algorithm. Inf Sci. doi: 10.1016/j.ins.2014.02.123
  21. 21.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713CrossRefGoogle Scholar
  22. 22.
    Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: IEEE international conference on systems, man and cybernetics 2009, SMC 2009, pp 997–1002Google Scholar
  23. 23.
    Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25:1955–1964CrossRefGoogle Scholar
  24. 24.
    Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15:645–665CrossRefGoogle Scholar
  25. 25.
    Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intell 24:517–525CrossRefGoogle Scholar
  26. 26.
    Boussaid I, Chatterjee A, Siarry P, Ahmed-Nacer M (2011) Hybridizing biogeography-based optimization with differential evolution for optimal power allocation in wireless sensor networks. IEEE Trans Veh Technol 60:2347–2353CrossRefGoogle Scholar
  27. 27.
    Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2011) Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO). Comput Oper Res 38:1188–1198MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39:3293–3304MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chatterjee A, Siarry P, Nakib A, Blanc R (2012) An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy. Eng Appl Artif Intell 25:1698–1709CrossRefGoogle Scholar
  30. 30.
    Saremi S, Mirjalili S (2013) Integrating chaos to biogeography-based optimization algorithm. Int J Comput Commun Eng 2:655–658CrossRefGoogle Scholar
  31. 31.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209. doi: 10.1016/j.ins.2014.01.038
  32. 32.
    Gandomi A, Yang X-S, Talatahari S, Alavi A (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Digalakis J, Margaritis K (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77:481–506MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 International conference on computer and information application (ICCIA), pp 374–377Google Scholar
  35. 35.
    Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14CrossRefGoogle Scholar
  36. 36.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  37. 37.
    Mirjalili S, Mirjalili SM, Yang X-S (2013) Binary bat algorithm. Neural Comput Appl 1–19. doi: 10.1007/s00521-013-1525-5
  38. 38.
    Mirjalili S, Hashim SM (2011) BMOA: binary magnetic optimization algorithm. In: 2011 3rd International conference on machine learning and computing (ICMLC 2011), Singapore, pp 201–206Google Scholar
  39. 39.
    Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. doi: 10.1016/j.swevo.2011.02.002
  40. 40.
    García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644CrossRefzbMATHGoogle Scholar
  41. 41.
    Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Shahrzad Saremi
    • 1
  • Seyedali Mirjalili
    • 1
  • Andrew Lewis
    • 1
  1. 1.School of Information and Communication TechnologyGriffith UniversityBrisbaneAustralia

Personalised recommendations