Advertisement

Neural Computing and Applications

, Volume 25, Issue 2, pp 459–468 | Cite as

Bat algorithm based on simulated annealing and Gaussian perturbations

  • Xing-shi HeEmail author
  • Wen-Jing Ding
  • Xin-She Yang
Original Article

Abstract

Bat algorithm (BA) is a new stochastic optimization technique for global optimization. In the paper, we introduce both simulated annealing and Gaussian perturbations into the standard bat algorithm so as to enhance its search performance. As a result, we propose a simulated annealing Gaussian bat algorithm (SAGBA) for global optimization. Our proposed algorithm not only inherits the simplicity and efficiency of the standard BA with a capability of searching for global optimality, but also speeds up the global convergence rate. We have used BA, simulated annealing particle swarm optimization and SAGBA to carry out numerical experiments for 20 test benchmarks. Our simulation results show that the proposed SAGBA can indeed improve the global convergence. In addition, SAGBA is superior to the other two algorithms in terms of convergence and accuracy.

Keywords

Algorithm Bat algorithm Swarm intelligence Optimization Simulated annealing 

Notes

Acknowledgments

The authors would like to thank the financial support by Shaanxi Provincial Soft Science Foundation (2012KRM58) and Shaanxi Provincial Education Grant (12JK0744 and 11JK0188).

References

  1. 1.
    Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO), vol 284. Springer, SCI, pp 65–74Google Scholar
  2. 2.
    Yang XS (2011) Bat algorithm for multi-objective optimization. Int J Bio Inspired Comput 3(5):267–274Google Scholar
  3. 3.
    Li ZY, Ma L, Zhang HZ (2012) Genetic mutation bat algorithm for 0–1 knapsack problem. Comput Eng Appl 2012(35):1–10 (in Chinese)Google Scholar
  4. 4.
    Lemma TA (2011) Use of fuzzy systems and bat algorithm for energy modeling in a gas turbine generator. In: IEEE Colloquium on Humanities, Science and Engineering, pp 305–310Google Scholar
  5. 5.
    Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483CrossRefGoogle Scholar
  6. 6.
    Mishra S, Shaw K, Mishra D (2012) A new metaheuristic classification approach for microarray data. Procedia Technol 4:802–806CrossRefGoogle Scholar
  7. 7.
    Khan K, Nikov A, Sahai A (2011) A fuzzy bat clustering method for ergonomic screening of office workplaces, S3T 2011. Adv Intell Soft Comput 101:59–66CrossRefGoogle Scholar
  8. 8.
    Khan K, Sahai A (2012) A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context. Int J Intell Syst Appl (IJISA) 4(7):23–29Google Scholar
  9. 9.
    Altringham JD (1996) Bats: biology and behaviour. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE, International Conference on Neural Networks, Perth, AustraliaGoogle Scholar
  11. 11.
    Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Int Stat Sci 8(1):10–15CrossRefGoogle Scholar
  12. 12.
    Zhiyuan W, Huihe S, Xinyu W (1997) Genetic annealing evolutionary algorithm. J ShangHai JiaoTong University (in China) 31(12):69–71Google Scholar
  13. 13.
    Xuemei Wang, Yihe Wang (1997) The combination of simulated annealing and genetic algorithms. Chin J Comput (in China) 20(4):381–384Google Scholar
  14. 14.
    Yang XS (2011) Review of meta-heuristic and generalised evolutionary walk algorithm. Int J Bio-Inspired Comput 3(2):77–84CrossRefGoogle Scholar
  15. 15.
    Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yang XS, Deb S (2012) Two-stage eagle strategy with differential evolution. Int J Bio-Inspired Comput 4(1):1–5CrossRefMathSciNetGoogle Scholar
  17. 17.
    Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gandomi AH, Yang XS, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Zhao S, Huang G (2006) Design and study of particle swarm optimization with simulated annealing. J Baise University 19(6):9–12MathSciNetGoogle Scholar
  20. 20.
    Gong C, Wang Z (2009) Proficient in MATLAB. Beijing: Publishing House of Electronics Industry (in China), pp 309–312Google Scholar
  21. 21.
    Hedar J Test functions for unconstrained global optimization [DB/OL]. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
  22. 22.
    Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–194zbMATHGoogle Scholar
  23. 23.
    Fisher RA (1925) Theory of statistical estimation. Proceed Camb Philos Soc 22:700–715CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of ScienceXi’an Polytechnic UniversityXi’anPeople’s Republic of China
  2. 2.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations